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Abstract

The main focus of this thesis is quantum entanglement and, more specifically, pro-
tocols that allow its distribution between distant places.

In the last decades, with the rise of attention on quantum technologies, entangle-
ment is mostly seen as a resource, that could be exchanged, measured, and ideally
stored and used when convenient. However, entanglement is not as stable and
cheap as the classical resources. One reason for this is that entanglement between
two quantum systems is easily disrupted by the interaction with the environment
that surrounds them. The presence of noise is even more significant when we wish
to entangle two systems that are very far away, a task that is essential for quantum
communication technologies. In this case, what can disrupt the entanglement is
not only the noise that the particles experience locally, but also the noise in the
quantum channel during the communication process, which can be significant over
long distances. For this reason, it is important to design distribution protocols that
work well in such conditions.

In 2003, Cubitt et al. showed the existence of a very curious class of protocols,
often called entanglement distribution with separable states (EDSS). They proved
that a non-entangled (separable) carrier can be used to increase, or even gener-
ate entanglement between two already distant parties. From this, some questions
arise. First, what limits or allows an entanglement distribution protocol, if not
the entanglement that is sent. Quantum discord was shown to be a necessary, but
not sufficient, resource for entanglement distribution. Another natural question is
whether these protocols can beat others, for technological purposes, especially in
noisy conditions. I will describe some work I have done in an attempt to partially
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address both of these questions.
After introducing various tools and concepts that are useful to understand this

topic (chapter 1) and motivate the necessity of entanglement distribution in quantum
communication (chapter 2), I will describe a proof-of-principle experiment demon-
strating EDSS schemes (chapter 3). Later (chapter 4), I will introduce a more general
classification of distribution protocols (excessive or non-excessive protocols), based
on whether the entanglement gain is larger than the one that is communicated,
describing specific examples and general properties of such protocols. I will then
partially address the problem regarding the robustness to the noise of communica-
tion protocols (chapter 5). Finally, in chapter 6, I will describe how entanglement
of a bipartite state can grow with a quantum measurement with unknown results.
I discuss the properties of the measurement and of the initial state that make this
process effective.
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1. Introduction: bipartite entangle-

ment

The goal of this chapter is to introduce a reader with a background in quantum
mechanics to some of the main tools and concepts used in the rest of the thesis. For
this, I will maintain a quick, often superficial approach. More details can be found
in [1, 2] and the rest of the bibliography.

I will discuss the definition and some measures of quantum entanglement of a
bipartite system, both in pure and mixed states, and other forms of correlations
that two quantum systems can share.

1.1 Pure entangled states

Quantum entanglement is considered one of the strongest, most characterizing, phe-
nomena of quantum mechanics. This characteristic is ubiquitous in any quantum
mechanical description, and yet really far from any classical view we are used to.

An entangled pure state of two particles, denoted by X and Y , is defined as a
state that cannot be written in the separable form:

|ψ〉XY = |φ〉X ⊗ |χ〉Y . (1.1.1)

One of the most paradigmatic examples is a singlet state of two qubits (quantum
systems with 2-dimensional Hilbert space)

|ψ−〉 = 1/
√

2 (|01〉 − |10〉) ,
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where |0〉 and |1〉 are two orthogonal vectors, forming a basis in the Hilbert space
of the each qubit. For instance, if each of the two qubits is a particle with spin 1/2,
the state |0〉 can indicate that the spin along the z axis is −1/2, |1〉 that it is +1/2.
This state just cannot be written as a single term of the form (1.1.1).

The consequence of having two particles in such an entangled state like the one
above is that, whenever a measurement of the spin along z is made on particleX, the
value of the spin on particle Y is also known with complete accuracy. However, since
the two particles do not interact or communicate with each other at the moment,
the state of Y cannot be affected by the measurement on X. Then a measurement
on the spin along y can be made at the same time, also with perfect accuracy. In
this case, the values of the spin in both directions are known with infinite precision,
which would violate the Heisenberg uncertainty principle, since the spin operators
in different directions do not commute.

This paradox, or a similar version, was famously noted by Einstein, Podolsky
and Rosen in their famous 1935 article “Can Quantum-Mechanical Description of
Physical Reality Be Considered Complete?” [3], and is known to most as the EPR
paradox. In their paper, they suggested that the description of quantum mechanics,
such as the collapse of the wave function or the uncertainty principle, and the notion
that the result of a measurement does not exist before the measurement itself, must
be somehow incomplete. This opened a debate in which personalities such as Bohr [4]
and Schrödinger [5] (who coined the term “entanglement”) took part. This debate
however mostly ended with the suggestion of John Bell of a way to test the existence
of hidden variables in the quantum mechanical description [6], that was eventually
convincingly implemented in experiments [7–11].

Entangled states arise very naturally in the dynamics of quantum systems. Of-
ten, when two initially separable particles collide (or communicate, or interact), for
instance if their interaction Hamiltonian has a form HXY = hX ⊗ hY , for a finite
amount of time, their state in the end will be entangled.

On the other hand, if the Hamiltonian that describes the dynamics of the system
is local, i.e. it has the form HXY = hY + hX , an initially separable state will
always stay separable. The class of operations in which the two subsystems interact
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independently that can be made through an Hamiltonian of this form are called
“local operations”, and it is easy to see that it can be described by a product of
unitary operations UX ⊗ UY , that cannot therefore entangle a separable state.

Entanglement cannot be made by using classical communication either. This
means that, even if two operators give each other instructions on how to act on the
two particles, for example agree on the time, or other parameters that enter in the
local operations, they will never turn an initially separable system into an entangled
one. For this reason, it is said that the set of separable states is closed with respect
to local operation and classical communication (LOCC).

Another important property of entangled states is that the two subsystems are
described by a mixed state. It is known that, for a bipartite state, the correct
statistical description of any observable of a single subsystem is given by the matrix
obtained by tracing out the rest of the system. This means that the state of X is
described by the density matrix

ρX = TrY (|ψ〉〈ψ|XY ) =

dY −1∑
i=0

〈χi |ψ〉〈ψ|XY |χi〉Y , (1.1.2)

where dY is the dimension of the Hilbert space of Y . If the state |ψ〉XY is separable,
the reduced state of X and Y are also pure, i.e. ρX = |φ〉〈φ|X , ρY = |χ〉〈χ|Y . If
the state |ψ〉XY is entangled however, the reduced states are mixed i.e. they can be
written as

ρX =
∑
i

pi |φi〉〈φi|X , (1.1.3)

where pi are positive numbers, or probabilities, such that
∑

i pi = 1.

For example, consider the reduced density matrix of a qubit X that shares the
singlet state in eq. (1.1.2) with Y . By tracing out the latter, we get

ρX =
1

2
|0〉 〈0|+ 1

2
|1〉 〈1| = I

2
. (1.1.4)

This state is completely mixed, meaning that, if one performs any measurement on
X, the result is completely undetermined, each eigenvalue has the same probability
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1/2 of being measured.

The state of X is completely mixed and, as we will see better later, the amount
of mixture in the reduced state is linked to the amount of entanglement in the whole
state. The singlet state above is, in fact, one of the maximally entangled states of
two qubits.

1.1.1 Schmidt decomposition

In general, a pure state of two subsystems of (finite) dimensions dX and dY can be
written as the superposition of dX × dY states

|ψ〉XY =

dX−1∑
i=0

dY −1∑
j=0

Aij |φi〉X |χj〉Y . (1.1.5)

However, there is particular representation that is often very convenient.

Say that X is a system of lower or equal dimensions than Y (if it’s not the case,
we can invert the roles of X and Y ), dX ≤ dY . Then, according to the Schmidt
theorem [1], there is an orthonormal basis of X, {|i〉X} and a set of dX orthogonal
states of Y , {|i〉Y }, such that the above state can be written as

|ψ〉XY =

dX−1∑
i=0

ai |i〉X |i〉Y , (1.1.6)

where the Schmidt coefficients ai are non-negative, real numbers. The proof is based
on the existence of the singular value decomposition of the matrix Aij, and can be
found in [1].

As an example, a state of two qubits is usually written as a superposition of four
terms:

|ψ〉XY = A00 |00〉+ A01 |01〉+ A10 |10〉+ A11 |11〉 . (1.1.7)

where Aij are in general complex. However, according to the Schmidt theorem, there
is a basis of X and a possibly different basis of Y , on which the above state can be
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written as the superposition of only two mutually orthogonal states:

|ψ〉XY = a0

∣∣0̂0̄
〉

+ a1

∣∣1̂1̄
〉
. (1.1.8)

For instance, the Schmidt probabilities of the singlet state in equation (1.1.2) are
both 1/2 and the Schmidt basis of X is composed by |0〉 and − |1〉. Furthermore,
even if Y is not a qubit, but it has arbitrary dimension dY , we still only need two
terms to describe the state in the Schmidt basis of X.

Here, I list some observations and remarks that are direct consequences of the
Schmidt theorem:

• for a given bipartite state, the Schmidt probabilities are unique;

• the real positive numbers λi = a2
i sum up to one because of the normalization

of the state, and are often called Schmidt probabilities ;

• a pure bipartite state is separable if and only if its Schmidt decomposition has
only one term. Then this is also the separable decomposition;

• the reduced state of X is diagonal on its Schmidt basis: ρX =
∑dX−1

i=0 λi |i〉〈i|X .
The reduced state of Y is also diagonal on |i〉Y : ρY =

∑dY −1
i=0 λi |i〉〈i|Y ;

• as a direct consequence of the point above, notice that, for any bipartite pure
state, the reduced density matrices ρX and ρY have the same spectrum of
eigenvalues, given by the Schmidt probabilities λi;

• if X and Y share a pure state, the rank of their reduced density matrices is the
same, and is at most the smallest between dX and dY , that is the number of
terms in the Schmidt decomposition. This is called Schmidt rank. Recall that
the rank of a matrix is the number of linearly independent rows or columns.

Schmidt probabilities and LOCC operations I already mentioned that sep-
arable states cannot be turned into entangled ones by LOCC only. However, if we
have two pure bipartite entangled states |φ〉 and |ψ〉, one can sometimes turn one
into the other with only LOCC operations.
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It was proved [12] that |φ〉 can be turned into |ψ〉 deterministically by LOCC
only, or |φ〉 → |ψ〉, if and only if the vectors of the Schmidt probabilities µψ and λφ
satisfy

λφ ≺ µψ. (1.1.9)

The symbol ≺ indicates majorization, which means

m∑
i=0

λi ≤
m∑
i=0

µi (1.1.10)

for all m from 0 to the Schmidt rank dX . Also, in the above equation, it is assumed
that the probabilities are arranged in decreasing order, i.e. λ0 ≥ λ1 ≥ ... ≥ λdX−1,
and the same for µψ.

Notice that the distribution in which µ0 = 1, and every other probability is zero
majorizes any other distribution, since any sum in equation (1.1.10) cannot exceed
1. This Schmidt decomposition represents a separable state. This implies that not
only separable states cannot become entangled via LOCC, but also that, vice versa,
any state can become any separable state via LOCC.

On the other hand, the flat distribution λi = 1/dX is majorized by any other
distribution. This means that the states with flat Schmidt probabilities can be
transformed into any other state of the same dimension via LOCC.

All the states that can be obtained with a unitary local transformation from the
state

|Ψ〉XY =
1√
dX

∑
i

|i〉X |φi〉Y . (1.1.11)

are therefore maximally entangled states in the partition X : Y , always assuming
dX ≤ dY .

For example, the singlet state is maximally entangled for a space of two qubits,
since we saw that its Schmidt probabilities are all equal to 1/2. Any state with 1/2

Schmidt probabilities is maximally entangled in this space. In particular, the four
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Bell states :

|φ+〉 =
1√
2

(|00〉+ |11〉) ;

|φ−〉 =
1√
2

(|00〉 − |11〉) ;

|ψ+〉 =
1√
2

(|01〉+ |10〉) ;

|ψ−〉 =
1√
2

(|01〉 − |10〉) .

(1.1.12)

are all maximally entangled and orthogonal to each other. They form a basis of the
Hilbert space of two qubits, called Bell basis.

If dX > 2, not all the pure states of X and Y can be connected deterministically
to each other via LOCC operations. For instance, if dX = 4, consider the two states,
in the Schmidt decomposition:

|φ1〉XY =
√

0.4 |00〉+
√

0.4 |11〉+
√

0.1 |22〉+
√

0.1 |33〉 ;

|φ2〉XY =
√

0.5 |00〉+
√

0.25 |11〉+
√

0.25 |22〉 ;
(1.1.13)

Although 0.5 > 0.4, we have 0.5 + 0.25 < 0.4 + 0.4. Then, neither of these Schmidt
probabilities majorizes the other. However, if two qubits in the state

|φ3〉AB =
√

0.4 |00〉+
√

0.6 |11〉 (1.1.14)

are “borrowed”, the Schmidt probabilities of the state |φ2〉XY ⊗ |φ3〉AB, in the par-
tition XA : Y B, are {0., 0., 0.1, 0.1, 0.15, 0.15, 0.2, 0.3}.
These majorize the probabilities of the state |φ1〉XY ⊗ |φ3〉AB in the same partition:
{0.04,0.04,0.06,0.06,0.16,0.16,0.24,0.24}. This means that the state |φ1〉XY ⊗ |φ3〉AB
can be transformed into |φ2〉XY ⊗ |φ3〉AB with a local unitary operation on XA and
Y B only. This is called “entanglement catalysis” [13], and it is the phenomenon
for which, by “borrowing” an entangled system (in this case A and B in the state
|φ3〉AB), a local transformation that was not deterministically possible becomes so.
The borrowed system is not affected by the operation, and can therefore be “re-
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turned” in the end.

1.1.2 Entropies of a quantum state

Von Neumann entropy

In classical information theory, the Shannon entropy [14]

H(X) = −
d−1∑
i=0

pi log2(pi) (1.1.15)

measures the length of the shortest string of bits needed to encode the message sent
by a source associated with a random variable X. Different values of X appear with
probabilities pi. In this sense, it is intuitively clear that such quantity is larger if we
consider two correlated variables X and Y instead of just X:

H(X, Y ) ≥ H(X), (1.1.16)

because you need a longer string to encode a message coming from two variables
instead of one. The equal sign only holds if the variables are perfectly correlated.

The Von Neumann entropy [15, 16] is a direct generalization of the Shannon
entropy to a quantum system:

S(ρ) = −Tr [ρ log2(ρ)] . (1.1.17)

In fact, if we write ρ in its eigenbasis, we see that, in terms of the eigenvalues of
ρ, {λ0 ...λd−1}, the above expression can be written as S(ρ) = −

∑d−1
i=0 λi log2(λi),

which is the Shannon entropy of the set of probabilities given by the eigenvalues λi.
If ρ = ρX is the reduced state of a bipartite pure system, the probabilities λi are

just the Schmidt probabilities of the pure state. For a pure state, the Von Neumann
entropy is S(|ψ〉 〈ψ|XY ) = 0. However, for a subsystem of a pure state, this quantity
is in general positive. For instance, consider the pure state of two qubits in the
Schmidt decomposition shown in Eq. (1.1.8). The von Neumann entropy of the
reduced density matrix of X is S(ρX) = −a2

0 log2 (a2
0) − a2

1 log2 (a2
1), that is strictly
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positive for any value of the Schmidt coefficient a0 ∈ [0, 1]. So this state violates
the bound imposed to the Shannon entropy of a classical system (1.1.16). Separable
states (a0 = 0, 1), on the other hand, respect the bound. This leads us to suppose
that the Von Neumann entropy is a good indicator of entanglement in a bipartite
pure system. This is in fact true in general, for any finite dimensions of the system.
We list some properties of the Von Neumann entropy that reinforce this idea:

• for a bipartite pure state ρXY , S(ρX) = S(ρY );

• S(ρ) = 0 if and only if ρ is pure (if ρ = ρX describes a subsystem of a bipartite
pure state, this means |ψ〉XY is separable);

• The maximum value of S(ρ) for a d-dimensional system is S(ρ) = log2(d) (if
ρ = ρX describes the subsystem of a bipartite pure state, this means |ψ〉XY is
maximally entangled).

Given a state of three subsystems A, B and C, the entropies of the subsystems satisfy
the strong sub-additivity condition S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC) [17]. A
weaker, but sometimes useful condition derives from that, and from the fact that
S(ρABC) ≥ 0. For any state

S(ρAC) ≤ S(ρA) + S(ρC). (1.1.18)

This is called sub-additivity condition.

Linear Entropy

The linear entropy [18] of a quantum state is defined as

SL(ρ) = 1− Tr(ρ2). (1.1.19)

If the density matrix ρ = ρX represents a subsystem of a pure state, this quan-
tity can be expressed in terms of Schmidt probabilities as SL(ρ) = 1 −

∑dX−1
i=0 λ2

i .
When applied to a subsystem, this quantity has very similar properties to the Von
Neumann entropy:
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• for a bipartite pure state ρXY , SL(ρX) = SL(ρY );

• SL(ρ) = 0 if and only if ρ is pure, and if the state describes a subsystem, this
means that the total state is separable;

• The maximum value of SL(ρ) for a d-dimensional system is S(ρ) = 1 − 1/d.
If the state describes a subsystem, this means that the state is maximally
entangled;

• Given a state of three subsystems A, B and C, the linear entropies of the
subsystems also satisfy the sub-additivity condition [19]

SL(ρAC) ≤ SL(ρA) + SL(ρC). (1.1.20)

Example: entanglement of a tripartite system

Let us consider a pure state of three qubits:

|ψ〉ABC =
1√
2
|0〉A |φ+〉BC +

1√
2
|1〉A |10〉BC , (1.1.21)

where |φ+〉 is the Bell state. This is already explicitly in the Schmidt form for the
partition A : BC, since 〈10 |φ+〉 = 0. In this partition, the state is maximally
entangled, hence S(ρA) = 1 and SL(ρA) = 1/2. It is easy to check that the state
can be rewritten as

|ψ〉ABC =

√
3

2
|0〉B |φ+〉AC +

1

2
|1〉B |01〉AC (1.1.22)

and this is the Schmidt decomposition in the bi-partition B : AC. In this partition,
however, the state is less than maximally entangled, and the entropies have values
S(ρB) = S(ρAC) = log(4)

4
− 3

2
log
(√

3
2

)
≈ 0.81 and SL(ρB) = 1− 9/16− 1/16 = 3/8.

The density matrix of C has the same entropy as B, due to the symmetry of the state
under exchange of B and C, followed by a local unitary. Notice that the inequalities
(1.1.18) and (1.1.20) are satisfied.
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1.2 Entanglement in mixed states and separability

criteria

In general, and always in practice, we are dealing with mixed states rather than pure
states, due to the inevitable decoherence caused by the interaction of the observed
system with the environment around it. It is then important to generalize the
notions of entanglement and separability to mixed states of two systems X and Y .
The direct generalization of the definition of separability for a pure state would be
that a bipartite mixed state of X and Y is separable if it can be written as a product
of two local density matrices

ρuncorrXY = ρX ⊗ ρY . (1.2.1)

Like in a separable pure state, the two subsystems don’t have any information about
each other, they are perfectly uncorrelated. However, this is not the commonly
adopted definition of a separable state. The reason for this is that this set is not
closed under LOCC operations.

Suppose that a person named Alice and another named Bob are each holding
one of the systems X and Y in their respective quantum labs. These subsystems
are perfectly uncorrelated, i.e. they are in a state of the form (1.2.1). Alice can
roll a die, and if she gets the side labeled 1, with a probability 1/6, she performs
a local operation on X, transforming the state into ρ1

X . In this case, she contacts
Bob through a classical channel, such as a telephone, and communicates to him the
result, telling him to perform an operation on Y that will turn the subsystem into
the state ρ1

Y . For any other result of the die tossing, they do nothing. The state in
this process becomes

ρXY =
1

6
ρ1
X ⊗ ρ1

Y +
5

6
ρX ⊗ ρY . (1.2.2)

This state cannot be written in the form (1.2.1) anymore. This shows that, unlike
the set of pure separable states, the set of uncorrelated density matrices is not closed
with respect to LOCC operations.
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However, the whole set of density matrices

ρsepXY =
∑
i,j

qi,jρ
i
X ⊗ ρ

j
Y . (1.2.3)

is closed under LOCC [20]. For this reason, this is the generally accepted definition
of separable density matrices.

By diagonalizing the local density matrices ρiX and ρjY , we see that separable
states can always be written as a mixture of pure states that are separable:

ρsepXY =
∑
i

pi
∣∣φiX〉 〈φiX∣∣⊗ ∣∣χiY 〉 〈χiY ∣∣. (1.2.4)

Every density matrix that cannot be written in a separable form is entangled. As a
trivial example, a projector on a Bell state ρXY = |ψ+〉 〈ψ+| cannot be decomposed
in any of the above forms, and is therefore entangled according to this definition, as
would be expected.

The sum in eq. (1.2.4) spans over a larger number of states than the dimension
of the Hilbert space of X and Y , dXdY . In general, the number of terms needed to
decompose a separable state (1.2.3) is (dXdY )2 [21, 22]. This is one of the reasons
why it is usually very hard to find whether a density matrix can be written in a
separable form: it is in general not possible to find the pure states in eq. (1.2.4)
by simply diagonalizing the density matrix. A separable density matrix can have
entangled eigenstates. For example, while a projector on a Bell state is entangled,
an even mixture of two Bell states ρXY = 1/2 |ψ+〉 〈ψ+|+ 1/2 |ψ−〉 〈ψ−| is separable,
as we will prove later, even though it has two maximally entangled eigenvectors.

The difficulty to check whether a density matrix is separable or entangled is
known as the separability problem. It is not as simple as for pure states, where
just calculating the entropy of the subsystems gives the answer. However, some
separability criteria are known. These are mathematical properties that distinguish
separable states from entangled ones. We briefly list and discuss some of them.
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1.2.1 Positive partial transpose

The operation of transposing a matrix is a positive map, in the sense that if a her-
mitian matrix M =

∑
i,j |i〉 〈i|M |j〉 〈j| has all positive eigenvalues, the eigenvalues

of the transposed matrixMT =
∑
|i〉 〈j|M |i〉 〈j| are positive as well. If the positive

matrix M describes a larger system

MXY =
∑
i,j,k,l

(
〈i|X 〈k|Y MXY |j〉X |l〉Y

)
|i〉 〈j|X ⊗ |k〉 〈l|Y , (1.2.5)

the partial transpose with respect to Y

MTY
XY =

(
IX + TY

)
MXY =

∑
i,j,k,l

(
〈i|X 〈l|Y MXY |j〉X |k〉Y

)
|i〉 〈j|X ⊗ |k〉 〈l|Y (1.2.6)

is not always positive [23]. The operation of partial transposition does not change
the trace of the matrix. For these reasons the operation of transposition T is said
to be a positive, trace preserving (PT) map, but not a completely positive, trace
preserving (CPT) map.

It is easy to see that all separable pure states are positive after partial transpo-
sition (PPT). The operation of partial transposition in the state (1.2.3) corresponds
to transposing all the density matrices with the label Y . Because these are positive
matrices, the operation makes the final matrix, that is also positive, another physical
density matrix. Then, if a density matrix has some negative eigenvalues after the
partial transposition, it must be entangled. This necessary criterion for separability
was first shown by Peres [23] and is known as PPT, or Peres-Horodecki criterion.

In fact, the PPT condition is quite strict for separable states of low dimensions:
Horodecki [24] proved that it is a necessary and also sufficient condition for separa-
bility in a Hilbert space of dimensions 2× 2 and 2× 3.

In general, any positive linear map that is not CP can provide a separability
criterion. If we apply the positive map Λ to a density matrix such that

(IX ⊗ ΛY )ρXY (1.2.7)
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has some negative eigenvalues, by the same argument that was used for transpo-
sition, we must conclude that the state ρXY is entangled [24]. The most general
separability criterion is that ρ is separable if and only if it stays positive under all
positive but not CP maps. The problem is that a complete characterization of this
class of maps is not known, and the search for independent, nontrivial not CP maps
is an active research field in linear algebra [25].

1.2.2 Entanglement witnesses

Since necessary and sufficient conditions for separability are difficult to obtain, prac-
tical entanglement detection is mostly via entanglement witnesses [26]. These wit-
nesses are a class of observables W over the XY space that satisfy two conditions:

• W has at least one negative eigenvalue;

• the mean value of W over any separable pure state is positive:
〈φX | 〈φY |W |φX〉 |φY 〉 ≥ 0 for all states |φX〉 and |φY 〉.

An example of an entanglement witness, if dX = dY = d, is the swap operator

Σ =
d∑
i,j

|i〉 〈j| ⊗ |j〉 〈i|, (1.2.8)

that exchanges the state ofX and Y . Here {|i〉 , |j〉} form a basis of the Hilbert space
of the systems. The second condition is satisfied, because 〈φX | 〈φY |S |φX〉 |φY 〉 =

| 〈φY |φX〉|2. Also, any state that is anti-symmetric under the exchange of X and
Y (such as the singlet state |ψ−〉 if X and Y are qubits) is an eigenstate of S
corresponding to the eigenvalue −1. S is therefore an entanglement witness [20].

If W satisfies both the above conditions and if the average of W over a state is
negative:

Tr[WρXY ] < 0, (1.2.9)

this is sufficient to show that ρXY is entangled.
The swap operator Σ, for instance, has a negative mean value over the singlet

state |ψ−〉 that is, of course, entangled. However, its mean value is positive over all
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Figure 1.1: Entanglement witnesses as hyperplanes Tr[Wρ] = 0 in the space of the density
matrices. Since the set of the separable states is convex, and it lies below the hyperplane
(Tr[Wρsep] ≥ 0), if a state is above the hyperplane, it must be entangled. Also, a state
lies below all the hyperplanes described by all entanglement witnesses if and only if it is
separable.

the other Bell states, showing that the condition (1.2.9) is only sufficient, and not
necessary for entanglement.

The equation Tr(WρXY ) = 0 represents a hyperplane in the space of the density
matrices, as shown in Fig. 1.1. By geometrical considerations, since the class of
separable states is convex, it can be shown [26], that a state is entangled if and only
if it satisfies inequality (1.2.9) for all the possible witnesses.

Entanglement witnesses are very useful in experiments, because they are explic-
itly observables. In this way, finding a negative average of this observable guarantees
that the state is entangled, without having to perform a full tomography of the state.

1.2.3 Genuinely multipartite entanglement

For the most part of this thesis, even when we are dealing with a state of many
particles, we are only concerned about bipartite entanglement, that is the entangle-
ment that two parts of the system share with each other. However, more than two
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quantum systems can be entangled with each other, not only in couples.

Consider a state of many parties, labeled A,B,C.... A genuinely multipartite
entangled pure state is a state that is entangled in any bipartition:

|ψ〉ABC... 6= |φ〉A |φ〉BC... , |φ〉AB |φ〉C... , |φ〉C |φ〉AB... etc. (1.2.10)

For example, for N qubits, the Greenberger-Horne-Zeilinger (GHZ) state

|GHZ〉 =
1√
2
|000...0〉+

1√
2
|111...1〉 (1.2.11)

is entangled in any bipartition, and has then genuinely multipartite entanglement.

Another important class of multipartite pure entangled states is known as the
class of Absolutely Maximally Entangled (AME) states. The special properties of
such states is that they are maximally entangled for any bipartition that is chosen. It
is easy to see that the GHZ state of three qubits is an AME state for such dimensions.
However, it is not possible to build an AME state for any number of qubits. For four
qubits, for instance, it was proven that AME states do not exist [27], and neither
for more than eight qubits [28]. For seven qubits, it’s not yet known whether AME
states are possible. However, explicit examples were found [29] of AME states of
five and six qubits. For instance, the state of five qubits

|AME〉 =
1

4
(|00000〉+ |10010〉+ |01001〉+ |10100〉

+|01010〉 − |11011〉 − |00110〉 − |11000〉

+|11101〉 − |00011〉 − |11110〉 − |01111〉

+|10001〉 − |01100〉 − |10111〉+ |00101〉). (1.2.12)

is maximally entangled in all possible bipartitions: writing the Schmidt decomposi-
tion of the state in a one-qubit basis, or in a two-qubits basis, you will always obtain
a maximally entangled state.

The generalization of the concept of multipartite entanglement to mixed states
is by imposing that the state is a mixture of genuinely multipartite entangled pure
states. In other words, for any decomposition of a genuinely multipartite entangled
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state ρ, there are no terms of the form

ρ = piρX ⊗ ρY + ... (1.2.13)

where X and Y represent any two groupings of the subsystems.

1.3 Entanglement measures

In this section I will introduce some entanglement measures, that is a number we can
attach to any bipartite state to quantify its entanglement and, if possible, compare
it to other states. Entanglement is essentially defined as a phenomenon that cannot
be created by LOCC: the separable states have been defined as those that can be
created via LOCC from a state that is uncorrelated. Then it is reasonable to expect
that a measure of entanglement cannot grow under LOCC either.

In fact, the most commonly accepted definition of an entanglement measure is
essentially through what is often called monotonicity axiom [30, 31]: a measure of
entanglement is any quantity that does not grow, on average, under LOCC opera-
tions.

Because this is the generally accepted definition of an entanglement measure, of-
ten the term entanglement monotone is used as a synonym of entanglement measure.
Some properties that follow from the monotonicity are

• For any separable state σ, M(σ)=0. If M is an entanglement monotone, it
already must hold that M is a constant over the set of separable states. It is
easy then, to put such constant to zero, if necessary;

• M(ρXY ) = M(UX ⊗ UY ρXYU †X ⊗ U
†
Y ), where UX and UY are local unitaries.

This holds because unitary operations are reversible.

Although monotonicity is the most important requirement for a function M(ρ)

to be considered an entanglement measure, there are other properties that are at
least desirable for a measure. Some of them are
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• M(σ)=0 if and only if σ is separable. This condition is not verified, for in-
stance, for negativity and logarithmic negativity, that will be introduced later;

• M reduces to Von Neumann entropy for pure states. This requirement is also
not always satisfied by many accepted measures;

• M is a convex function, i.e. M(c1ρ1 + c2ρ2) ≤ c1M(ρ1) + c2M(ρ2), if c1 and
c2 are positive numbers.

We quickly now list and discuss some entanglement measures.

1.3.1 Entropies as entanglement measure

We saw, in sec. 1.1.2 that, if |ψXY 〉〈ψXY | is a bipartite pure state, the Von Neumann
entropy of the reduced density matrix ρX , we call it ES(|ψXY 〉〈ψXY |) is a measure
of how uniform the Schmidt probabilities are. Then, if the Schmidt probabilities
of a pure state |ψXY 〉〈ψXY | majorize those of another state |φXY 〉〈φXY |, we must
have ES(|ψXY 〉〈ψXY |) ≤ ES(|φXY 〉〈φXY |). From Nielsen’s theorem, introduced in
sec. 1.1.1, we conclude that the Von Neumann entropy of the reduced state is an
entanglement monotone, therefore an entanglement measure for pure states. In fact,
this is perhaps the most fundamental entanglement measure, and many other known
measures, like entanglement of formation or relative entropy of entanglement, are a
generalization of it to mixed states, like we will see in the following.

From an identical argument, the linear entropy, introduced in sec. 1.1.2 is also
an entanglement monotone.

1.3.2 Negativity

The first entanglement measure for general mixed states that we present is the neg-
ativity after partial transposition, often simply called negativity [32]. We already
introduced the concept of partial transposition (1.2.6), and the fact that separa-
ble states always stay positive under such operation. Negativity is defined as the
magnitude of the sum of all the negative eigenvalues of the matrix obtained from
applying the operation of partial transpose to the state. This function satisfies the
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monotonicity axiom [32], and is zero for all separable states. For all entangled states
of dimension 2× 2 or 2× 3, it is strictly positive, while for higher dimensions there
exist some entangled states that have zero negativity [24].

Given a generic bipartite density matrix ρXY , the negativity can be written as

NX:Y (ρXY ) =
d−1∑
i=0

|λi| − λi
2

=

∑d−1
i=0 |λi| − 1

2
, (1.3.1)

where λis are the eigenvalues of the partially transposed matrix ρPTXY . The second
equality holds because the operation of partial transposition does not affect the
trace, that is then equal to 1.

Eq. (1.3.1) is often written as

NX:Y (ρXY ) =
||ρPT || − 1

2
(1.3.2)

where ||M || = Tr[
√
M †M ] is the trace norm of the generic matrix M . Like any

norm, ||M || satisfies the condition ||cM || = |c|||M ||, for any scalar c, and the triangle
inequality ||M+M ′|| ≤ ||M ||+||M ′||. Using these inequalities, we see that negativity
is a convex function:

NX:Y

(∑
i

piρi

)
≤
∑
i

piNX:Y (ρi) (1.3.3)

An advantage of N as a measure is that it is very easy to compute, at least if the
dimensions of X and Y are not high, so that the diagonalization becomes difficult.

Example: negativity of a Bell state

Consider a Bell state |φ+〉 = 1/
√

2(|00〉+|11〉) of two qubits X and Y . The projector
on this state |φ+〉 〈φ+| is

|φ+〉 〈φ+| =
1

2
(|00〉〈00|+ |11〉〈11|+ |00〉 〈11|+ |11〉 〈00|), (1.3.4)
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so the partial transposition

|φ+〉 〈φ+|TX =
1

2
(|00〉〈00|+ |11〉〈11|+ |01〉 〈10|+ |10〉 〈01|), (1.3.5)

which in the canonical basis {|00〉 , |01〉 , |10〉 , |11〉} is

|φ+〉 〈φ+|TX =


1
2

0 0 0

0 0 1
2

0

0 1
2

0 0

0 0 0 1
2

 (1.3.6)

This matrix has three positive eigenvalues 1/2 and one negative eigenvalue −1/2.
Hence, the negativity of this state is 1/2. Since all the Bell states can be obtained
from |φ+〉 via local unitary transformations, they all have negativity 1/2. This is
the largest negativity that can be achieved by a state of two qubits, or any density
matrix of rank two.

Example: negativity of a Bell-diagonal state

We now calculate the negativity of a class of states that will be very useful in the
rest of this thesis, the class of the Bell diagonal states.

These are states of two qubits that are obtained by mixing projectors on the four
states of the Bell basis:

ρXY = A |φ+〉 〈φ+|+B |φ−〉〈φ−|+ C |ψ+〉〈ψ+|+D |ψ−〉〈ψ−| , (1.3.7)

where A, B, C and D are probabilities, i.e. positive numbers that sum to 1. If we
transpose with respect to X, the matrix we obtain in the canonical basis is

ρTXXY =
1

2


A+B 0 0 C −D

0 C +D A−B 0

0 A−B C +D 0

C −D 0 0 A+B

 . (1.3.8)
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This matrix has eigenvalues {A+B+C−D
2

, A+B−C+D
2

, A−B+C+D
2

, −A+B+C+D
2

}. If A =

1, and so B = C = D = 0, we recover the negativity of |φ+〉 in the previous
example. Each of these eigenvalues are positive, unless one of the coefficients is
larger than 1/2, given that their sum has to be 1. If we call λ1 =max(A,B,C,D)

the largest eigenvalue of the original density matrix, we get that N(ρ) = max(λ1 −
1/2, 0). Since negativity under partial transposition is both necessary and sufficient
for entanglement of two qubits, we have shown that a Bell diagonal state is entangled
if and only if its largest eigenvalue is larger than 0.5.

1.3.3 Logarithmic negativity

Another entanglement monotone is the logarithmic negativity [32,33], defined as

LX:Y (ρ) = log2 ‖ρPTXY ‖ = log2(2NX:Y + 1). (1.3.9)

Since LX:Y (ρ) is a monotonic function of the negativity of the state, if NX:Y does
not increase under LOCC, neither does LX:Y . Like negativity, its value is zero when
applied to a separable state. For example, in a Bell state of two qubits, its value is
1.

Differently from negativity and many other measures, however, this function is
not convex.

1.3.4 Relative entropy of entanglement

The relative entropy between the density matrix ρ and another σ, of the same
dimension, is defined as

S(ρ||σ) = −Tr(ρ log σ)− S(ρ) = Tr[ρ(log ρ− log σ)] (1.3.10)

where S(ρ) is the Von Neumann entropy, defined as in eq. (1.1.17). This function
is nonnegative, for any pair of density operators, and its value is zero if and only
if ρ = σ. In this sense, it can be considered as a measure of the distance between
the two density matrices. However, it is not strictly a distance, not being in general
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Figure 1.2: Graphic representation of the relative entropy of entanglement of a state ρ.
The state σ is the closest separable state to ρ as measured by the quantum relative entropy.

symmetric: S(ρ‖σ) 6= S(σ‖ρ).

Still, this interpretation as a pseudo-distance gives a useful way to measure the
entanglement of the state. Since the set S of separable states is convex, we expect
that the more a state is entangled, the farther it lies from the set. We can, then,
define an entanglement measure as

ER(ρ) = inf
σ∈S

S(ρ‖σ), (1.3.11)

that is, the distance from the closest separable state. This idea was first introduced
in [31], where it was also proven that ER(ρ) it is a convex entanglement monotone.

Other distance-based entanglement measures are possible and have been pro-
posed [34,35]. The idea of entanglement as a distance is particularly useful because
it allows comparing, directly and quantitatively, entanglement with other forms of
classical and quantum correlations, as we will see later. However, one disadvantage
of this measure is that the minimization over the set of separable states is in general
difficult to perform, analytically or numerically, making it hard to compute.
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1.3.5 Other entanglement measures

Among many entanglement monotones that are known (see [36] for a review), I
would like to mention briefly some that have been useful for my research.

Optimal singlet fraction

The optimal singlet fraction [37], also called fidelity [30] describes how similar a
state ρ is to a maximally entangled state

F(ρ) = max
Φ

(〈Φ| ρ |Φ〉), (1.3.12)

where the maximum is taken over all maximally entangled states |Φ〉.

Concurrence

For a density matrix of two qubits ρ, the concurrence [38] is defined as

C(ρ) = max(0, λ1 − λ2 − λ3 − λ4), (1.3.13)

where λi is the ith largest eigenvalue of the matrix M = σY ⊗ σY ρ∗σY ⊗ σY . Here,

σY =

(
0 −i
i 0

)
(1.3.14)

is the Pauli matrix.

Entanglement of formation

The entanglement of formation [30] is defined as the smallest average Von Neu-
mann entropy among all the possible pure state decompositions of the state ρ =∑

i pi |ψi〉〈ψi|:

EF = inf
{pi,ψi}

(∑
i

piES(|ψi〉〈ψi|)

)
. (1.3.15)
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For a state of two qubits, the entanglement of formation is univocally given by
concurrence [39].

1.3.6 Operational measures of entanglement

We have given the fundamental axiom that all entanglement measures need to sat-
isfy. However, there is a different approach to define the amount of entanglement
stored in a state, which is considering it as a resource. The question of how much a
state is entangled, then, translates into how much of this resource can be extracted
from the state, or how much is needed to create it. We now introduce two entan-
glement measures that directly stem from this idea: distillable entanglement and
entanglement cost [31].

Distillable entanglement

The distillable entanglement describes the minimum number of copies of the state,
n, that are needed in order to create m copies of maximally entangled states in
the asymptotic case where n → ∞. We will describe the process of entanglement
distillation in sec. 2.3.1. However, roughly speaking, it is the process of extracting
some maximally entangled pairs from more non-maximally entangled pairs only via
LOCC.

Entanglement cost

Entanglement cost answers the inverse question to distillable entanglement. This
question is how many copies n of a maximally entangled state do we need in order
to create m copies of the state only with LOCC. The asymptotic rate limn→∞m/n

is the entanglement cost EC .

Operational meaning of entanglement monotones

The distillable entanglement, the entanglement cost, or any measure of entanglement
that is defined via the protocols that can be realized from the state are often difficult
to compute. Axiomatic measures, on the other hand, only satisfy the monotonicity
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condition, and don’t always have a clear operational meaning. However, they are
usually easier to compute. For this reason, it is interesting to see what the number
described by entanglement monotones mean, how it can be used as a resource.
Among others, we list some operational properties associated with the entanglement
monotones that were listed above:

• negativity, singlet fraction and concurrence of a state all provide an upper
bound to the accuracy that can be reached when performing a teleportation
protocol [37, 40];

• Logarithmic negativity provides an upper bound to distillable entanglement;

• The entanglement of formation of infinite number of copies of the system is
equal to the entanglement cost of the state [41]: EC(ρ) = limn→∞

1
n
EF (ρ⊗n).

1.4 Correlations between quantum systems

Entanglement is probably the most prominent and the most studied among the
forms of correlations that two quantum systems can share. However, other forms of
correlations are known. Some of them are classical (two quantum systems can share
some mutual information like classical systems do). Others are impossible to attain
in a classical system. In this section, we will introduce quantum discord, a form of
purely quantum correlation, more general than entanglement, that can be found in
mixed states. Later, we will also define the correlation tensor, a way to describe the
correlations between local measurements on different parties.

1.4.1 Mutual Information

Mutual information quantifies any possible form of correlations that two systems
can share.

In this section, we first introduce very briefly some elements of classical infor-
mation theory needed to understand the concept of mutual information between
two classical systems, and then discuss how such definition can be generalized to
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quantum systems. A much more extensive treatment of the classical case can be
found in [42], while for the generalization to quantum systems and the definition of
quantum discord, you can see [1].

Classical mutual information

In classical information theory, mutual information describes how much information
one system stores about another.

Suppose a source generates randomly a string of values corresponding to an
alphabet, according to the probability distribution p(a). If another source also
emits a message in the form of a string with values according to probability q(a), the
relative entropy, or Kullback-Leibler distance between the probability distributions
q and p is defined as

D(p||q) = −H(p)−
∑
a

p(a) log(q(a)), (1.4.1)

where H(p) is the Shannon entropy of the distribution p:

H({pa}) = −
∑

pa log2(pa). (1.4.2)

Since the Kullback-Leibler distance is always strictly positive unless the two prob-
ability distributions are identical, it can be interpreted as the distance between the
distributions p and q.

Now, suppose that the message (a random variable) is divided into two messages
(two random variables), X and Y , that are encoded as the pair {x, y}. The prob-
ability of having the pair of values {x, y} is p(x, y), while the probability of having
only the value x of the variable X is given by p(x) =

∑
y p(x, y), and the same for

Y , p(y) =
∑

x p(x, y). On the other hand, if we already measured X and found its
value to be x̄, the conditional probability, or the probability of Y having value ȳ
when X has x̄, is

p(y = ȳ|x = x̄) =
p(x̄, ȳ)∑
y p(x̄, y)

=
p(x̄, ȳ)

p(x̄)
. (1.4.3)

Suppose that X and Y are two completely independent variables. Then, we must
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have that p(x)p(y) = p(x, y), for any values of x and y.

Therefore, if two variables are correlated, the Kullback-Leibler distance between
the distribution p(x, y) and the distribution q(x, y) = p(x)p(y) must be strictly
positive. This is how the mutual information between X and Y is defined:

I(X;Y ) = D (p(x, y)||p(x)p(y)) = H(X) +H(Y )−H(X, Y ), (1.4.4)

The second equality is obtained by the definition of relative entropy, eq. (1.4.1).

Another way of writing the mutual information is by defining the conditional
entropy of the bipartite system:

H(Y |X) = −
∑
x

pxH(Y |x) = −
∑
x

px,y log(p(y|x)) = H(X, Y )−H(X), (1.4.5)

The mutual information, then, can be re-written in terms of the conditional entropy:

I(X;Y ) = H(X)−H(X|Y ). (1.4.6)

Holevo bound

The Holevo theorem [43] describes the amount of classical mutual information that
can be extracted from a quantum system. Suppose that Alice wants to encode a
message in her quantum system A. To do this, she prepares a different quantum
state ρx according to the probability px of a classical variable X. Then Bob receives
the system A in the state ρ =

∑
x pxρx, and tries to decode the information on the

variable X by taking POVM measurements (see Appendix) on A. The measurement
result defines a random variable Y .

The Holevo theorem states that, in this scenario, the mutual information between
the variables Y and X is bound from above:

I(Y : X) ≤ S(ρ)−
∑
x

pxS(ρx), (1.4.7)

where S represents the Von Neumann entropy.

If A is a system composed of N qubits, the Von Neumann entropy is at most
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N . Then we have I(Y : X) ≤ N , so a consequence of the Holevo theorem is that at
most N bits of classical information can be encoded in a system of N qubits.

1.4.2 Mutual information between quantum systems

Given a density matrix of two quantum systems X and Y , ρXY , the most natu-
ral generalization of the classical definition of mutual information is to take the
distance, expressed by the relative entropy, between the state ρXY and the closest
state uncorrelated state. It turns out that the closest such state is simply given by
the tensor product of the reduced density matrices ρX ⊗ ρY . We therefore have

I(X;Y ) = S(ρXY |ρX ⊗ ρY ) = S(ρX) + S(ρY )− S(ρXY ), (1.4.8)

where S(ρ|σ) is the quantum relative entropy and S(ρ) the Von Neumann entropy
of the density matrix. This is the mutual information between two systems X
and Y , and it quantifies all the forms of correlations that the systems have about
each other. However, there are other ways of extending the classical definitions to
quantum systems. Whenever a measurement is conducted on a quantum system, the
results are typically random. We can use the resulting probability distribution as the
classical distribution in the previous section, and check how much a measurement
on a subsystem says about the other subsystem.

Suppose that Bob performs a projective measurement of the observable OY that
is diagonal on the basis {|ψ0〉 , ... |ψi〉 , ... |ψdY −1〉} (see Appendix). If he measures
the ith outcome, the state of X after the measurement on Y is

ρX|i =
〈ψi| ρXY |ψi〉

Tr(|ψi〉〈ψi| ρXY )
(1.4.9)

and the probability of this measurement outcome is given by pi = Tr(|ψi〉〈ψi| ρXY ).
The ‘quantum-classical’ conditional entropy can therefore be defined, similarly to
(1.4.5) as

Sqc(X|Y ) =
∑
i

piS(ρX|i), (1.4.10)
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where S(ρX|i) is the Von Neumann entropy of the state (1.4.9). This definition
depends on the basis of the particular observable OY , and is not symmetric if the
roles of X and Y are exchanged.

An alternative definition of mutual information between two subsystems, then,
is by rewriting Eq. (1.4.6)

J(X|Y ) = S(ρX)− sup
OY

Sqc(X|Y ), (1.4.11)

The first element on the right hand side is still the Von Neumann entropy of the
reduced state of X. The second term is the maximum value of the conditional
entropy (1.4.14) over all possible measurement bases.

These two definitions of mutual information between two quantum systems are
not always equivalent. In fact J(X|Y ) describes the classical information that the
two systems share. This brings us to the definition of quantum discord.

1.4.3 Quantum discord

The difference between the two definitions of mutual information above, that are
perfectly equivalent in classical theories, was first noted in [44,45].

Consider the state of two qubits

ρXY =
1

3
|0〉〈0| ⊗ |0〉〈0|+ 1

3
|1〉〈1| ⊗ |1〉〈1|+ 1

3
|+〉〈+| ⊗ |+〉〈+| , (1.4.12)

where |+〉 = 1/
√

2(|0〉 + |1〉). The Von Neumann entropy of the whole state is
S(ρXY ) = log(3)

3
− 1

3

(
2−
√

2
)

log
(

1
6

(
2−
√

2
))
∼ 1.32.

The reduced states of X and Y have the same spectrum
{

2
3
, 1

3

}
, then S(ρX) =

S(ρY ) = 2
3

log
(

3
2

)
+ log(3)

3
∼ 0.92. Thus, the mutual information between X and Y

in this state is
I(X;Y ) = S(ρX) + S(ρY )− S(ρXY ) ∼ 0.52. (1.4.13)
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Now, we calculate the quantum-classical conditional entropy between X and Y

Sqc(X|Y ) =
∑
i

piS(ρX|i). (1.4.14)

given a generic measurement over any basis of qubit Y .

It is quite intuitive that the maximum conditional entropy is obtained when
measuring Y over an observable diagonal in the canonical basis, i.e. |0〉 and |1〉.
This was also shown in the original article [44]. Then the two outcomes, 0 and 1

have the same probability, 1/2 of being measured on this state. Also, the states of
X obtained by measuring the value 0 on Y has Von Neumann entropy: S(ρ0

X) =

−1
6

(
3−
√

5
)

log
(

1
6

(
3−
√

5
))
− 1

6

(
3 +
√

5
)

log
(

1
6

(
3 +
√

5
))
∼ 0.55, and S(ρ1

X) is
identical. Then, according to the definition (1.4.11), S(X|Y ) = 1/2S(ρ0

X)+1/2S(ρ1
X) =

S(ρ0
X). Then we have

J(X|Y ) = S(ρX)− S(ρX |ρY ) ' 0.92− 0.55 = 0.37. (1.4.15)

The difference between the two mutual informations (1.4.13) and (1.4.15) is due to
the fact that a measurement performed on Y affects the system X as well. This is
impossible with a classical system. The only states that have zero discord are of the
form

ρclXY =

dy−1∑
i=0

piρ
X
i ⊗ |ψi〉〈ψi| . (1.4.16)

where 〈ψi|ψi〉 = δij. For this class of states there exists at least a measurement on
Y , the one taken on a basis that includes the vectors |ψi〉, that does not perturb the
state of X. These are often called classical states (or quantum-classical states, as
opposed to the classical-quantum ones where the roles of X and Y are interchanged).

The quantity I(X;Y )− J(X|Y ) is called quantum discord D(X|Y ). Discord is
never negative for any state [46]. Also, it is not symmetrical under the exchange of
X and Y : D(X|Y ) 6= D(Y |X). Notice that the discorded state that was described
in this section is separable (and can therefore be made by LOCC). Discord is a
weaker property than entanglement: all entangled states are discorded, but not vice
versa.
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The existence of discord in separable states means that entanglement does not
take into account all possible forms of quantum correlations. The study of the prop-
erties of discord and discorded states is very broad (see [47] for a review) and some
protocols have been found suggesting that discord is a useful resource in quantum
communication protocols [48–52]

Relative entropy of discord

An alternative measure of discord is the relative entropy of discord [53, 54]. The
idea is similar to that of the relative entropy of entanglement, introduced in Sec.
1.3.4, where entanglement was measured as a distance (in terms of relative entropy)
between the state and the closest separable state. Discord can also be measured as
the distance from the closest possible classical state, of the form (1.4.16).

DR(ρXY ) = inf
χ∈C

S(ρXY |χ), (1.4.17)

where χ is a state belonging to the set of classical states C. This measure is often
called relative entropy of discord. Recall that mutual information was also defined
in terms of relative entropy from the closest uncorrelated state. An illustration
of correlations as relative entropies is shown in Fig. 1.3. In general, any form of
correlation can be defined as a distance from the set of states that do not present
this property. The beauty of such a unified view is that all forms of correlations can
be compared with one another, and that can be naturally extended to multipartite
systems. The search for other measures of quantum correlations that allow a unified
definition of quantum correlations is indeed very interesting [55,56].

1.4.4 Correlation Tensor

The correlation tensor is a different way of describing the presence of correlations
between quantum systems. I will first introduce the Bloch vector of a qubit state and
observable, and then proceed to generalize this concept to a multi-partite system,
presenting the correlation tensor.

I will then discuss a physical interpretation of this tensor as related to the corre-
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Figure 1.3: An illustration of the idea of correlations as distances. The set of uncorrelated
states (represented by the black lines) lies inside both the classical and the separable
sets. Hence the mutual information, defined as the minimum distance to the set is the
most inclusive correlation between two parties, and can be generalized similarly to many
parties. The discord can be defined as the distance from the set of classical correlated
states, while entanglement is measured as the distance from the larger separable set.

lations that are obtained by measuring local observables in a multi-partite quantum
system.

Bloch vector of a qubit state

Consider a general density matrix of a qubit. This is a hermitian, positive-definite
2× 2 matrix with trace equal to 1. As such, it depends on three real numbers, and
it can always be written as

ρ =

(
1+a

2
c−id

2
c+id

2
1−a

2

)
. (1.4.18)

By defining the 3-dimensional Bloch vector ~s = {a, b, c}, the matrix above can be
written as

ρ =
σ0

2
+
~s · ~σ

2
. (1.4.19)

where σ0 is the identity matrix

σ0 =

(
1 0

0 1

)
(1.4.20)
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and ~σ = {σ1, σ2, σ3} are the three Pauli matrices

σ1 ≡ σx =

(
0 1

1 0

)
, (1.4.21)

σ2 ≡ σy =

(
0 −i
i 0

)
, (1.4.22)

σ3 ≡ σz =

(
1 0

0 −1

)
. (1.4.23)

Each component of the Bloch vector can be evaluated as si = Tr(ρσi).

Its norm, as is easy to check by taking the square of equation (1.4.19), is at most
one |~s|2 ≤ 1, and the equality only holds for pure states. The Bloch vector maps
the space of density matrices of a qubit into a sphere of radius one in the three-
dimensional cartesian space. As is easy to show, the Bloch vectors of two orthogonal
pure states are parallel and opposite to each other.

Bloch vector of an observable of a qubit

Any projective measurement on a qubit has at most two outcomes. Without loss
of generality, assume that these eigenvalues are ±1. Then any observable can be
written as

O = |m+〉〈m+| − |m−〉〈m−| =
σ0

2
+
~m · ~σ

2
− σ0

2
+
~m · ~σ

2
= ~m · ~σ (1.4.24)

where ~m is the Bloch vector of |m+〉 and we used the fact that the two orthogonal
states |m+〉 and |m−〉 have opposite Bloch vectors.

Correlation tensor of many qubits

We are now ready to define the correlation tensor of a state of many qubits. As the
four Pauli matrices form a basis of the space of density matrices of one qubit, the
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space of N qubits is spanned by the 4N matrices

σµ1 ⊗ σµ2 ⊗ ...⊗ σµ2 , (1.4.25)

where the indeces µi run from 0 to 3.

Therefore, a general density matrix of N qubits can be written as

ρN =
3∑

µ1,µ2,...,µN=0

Tµ1,µ2,...,µNσµ1 ⊗ σµ2 ⊗ ...σµN . (1.4.26)

Here, we have already defined the extended correlation tensor of the state

Tµ1,µ2,...,µN = Tr (ρσµ1 ⊗ σµ2 ⊗ ...⊗ σµN ) . (1.4.27)

The normalization of the density matrix implies that T0,0,...,0 = 1.

To understand the meaning of this tensor, imagine that N observers perform
each a measurement over their respective qubits. Each of them obtains a result that
is either 1 or -1. The correlation function between the outcomes of the measurements
is defined as the average of the product of the outcomes. Using the parametrization
of the one-qubit operators as Bloch vectors, this reads:

C~m1,..., ~mN
= Tr

(
ρN ~m1 · ~σ(1) ⊗ ...⊗ ~mN~σ

(N)
)
. (1.4.28)

From the form of the density matrix (1.4.26), the last expression can be also written
as

C~m1,..., ~mN
=

3∑
k1=1

...

3∑
k=1

Tk1,...,kN ( ~m1)k1 ...( ~mN)kN = T̂ · ~m1 ⊗ ...⊗ ~mN , (1.4.29)

where ( ~mi)ki is the kthi component of the Bloch vector associated with the mea-
surement on the ith. The last expression denotes the scalar product, in the 3N -
dimensional cartesian space, between the components of the correlation tensor, that
we may call N -partite correlation tensor, and the measurement Bloch vectors.

If theN -partite correlation tensor of a state is zero, any set of local measurements
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will always be uncorrelated. From a similar derivation, we would see that the tensor
T̂M = Tk1,...kM ,0....0, with M ≤ N , that we may also call M−partite correlation
tensor, describes the correlation functions between local measurements performed
on the first M qubits.
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2. Introduction: quantum communi-

cation

Quantum communication studies the strategies through which a communication pro-
cess can be performed by using quantum states and operations. The communication
can be classical, occurring through classical channels such as internet or a telephone,
or quantum, where a part of the quantum system is sent.

In this chapter, some protocols for quantum communication are presented. First,
we present the formalism of Kraus operators for quantum channels, then we de-
scribe some famous examples of quantum communication involving entanglement.
Finally, we review ways in which entanglement can be communicated, distilled, or
distributed.

2.1 Quantum channels

Quantum channels are the most general quantum operations because, when applied
on a part of the system described by a generic density matrix, give as a result another
density matrix. In order to do this, a map Φ between two matrix spaces L → M
must be:

• linear i.e Φ(aA + bB) = aΦ(A) + bΦ(B) for any operators A and B in L and
c-numbers a and b;

• completely positive (CP), i.e. (IX⊗ΦY )AXY has all positive eigenvalues when
applied to a positive operator AXY ∈ H ⊗ L;
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• trace-preserving (CPT), i.e. Tr (Φ(A)) = Tr(A) for any A ∈ L.

For example, the operation of trace is a quantum channel, having all the three
properties that we listed. Transposition, on the other hand, is not, because, even
though it’s both linear and trace-preserving, it is not completely positive.

A way of representing any completely positive, linear map is in terms of matrices,
known as Kraus operators, [57]:

Φ(ρ) =
∑
n

KnρK
†
n. (2.1.1)

For this map to be trace-preserving, we need one additional condition

∑
n

K†nKn = I. (2.1.2)

The Kraus representation for a given channel is not unique. However, for any
channel, it is always possible to find a minimal Kraus representation that includes
dL × dM operators. If, in addition, the channel acting on an identity matrix gives
another identity matrix, the channel is said to be unital.

Kraus operators between the same space describe a unitary evolution of the
system in a larger Hilbert space [58]. To see this, consider a systems A and ancilla
B. They are initially uncorrelated, so that the initial density matrix can be written
as ρ(0) = ρA ⊗ ρB. If at time t = 0 they start interacting with Hamiltonian HAB,
the state at time t is given by

ρ(t) = UtρA ⊗ ρBU †t , (2.1.3)

where Ut is the unitary matrix e−i
HABt

~ .

By tracing out the system B, on the eigenbasis of ρB =
∑
λi |i〉〈i|, we see that

the state of A can be written as

ρA(t) =
∑
i,j

〈i|U
√
λi |j〉 ρA 〈j|U †

√
λi |i〉 . (2.1.4)
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ρA⊗ρB(0) ρAB(t)

ρA(0) ρA(t)

UAB

TrBTrB

{Kn}

Figure 2.1: A quantum channel, represented by Kraus operators Kn, describes a unitary
interaction of the system with an ancillary environment B.

This is similar to eq. (2.1.1), where Kn = Kij = 〈i|U
√
λi |j〉. It is easy to check

that these Kraus operators also satisfy the condition in eq. (2.1.2).

The inverse is also true: a linear CP map on the matrix space L, or equivalently,
a set of Kraus operators, can always be described by a unitary operation on a larger
space, according to the Stinespring dilation theorem [59]. This idea is illustrated
in fig. 2.1. From a physical perspective, then, quantum channels describe the
interaction of the system with its environment. In this sense, they describe the noise
that affects a quantum particle traveling between two places.When the coupling with
the environment is strong, the state of the system can be greatly disrupted, resulting
in a strong quantum noise.

2.1.1 Entanglement breaking channels

Entanglement breaking channels (EBC) are a class of quantum channels, that break
the entanglement of any system that crosses them with the rest of the world. This
means that, for any state of a bipartite system of particle X, of dimension dX and
Y , of dimension dY , by sending Y through a EBC channel, the final state will always
be separable in the partition Y : X.

In [60] some equivalent conditions for EBC are derived. In particular, we are
mostly interested in three necessary and sufficient conditions for characterizing them.
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Given a CPT map Φ, the following conditions are equivalent:

• Φ is entanglement breaking.

• Φ breaks the entanglement of any maximally entangled state. That is, (I ⊗
Φ) |φ+〉 〈φ| is separable, where |φ〉 is a maximally entangled state:

|φ〉 = UX ⊗ UY
1√
dY

∑
j

|j〉 |j〉, (2.1.5)

where {|j〉} is a local basis.

• Φ can be represented by rank-1 Kraus operators: Kn = |vn〉 〈wn|.

The last condition implies that the channel applies a projective measurement on the
subsystem Y that crosses it:

Φ(ρY ) =
∑
n

|vn〉〈vn|Tr
[
|wn〉〈wn| ρY

]
. (2.1.6)

If Y is a part of a bipartite system, a representation of the action of Φ on the
subsystem Y is

(IX ⊗ ΦY )ρXY =
∑
n

TrY (|wn〉 〈wn| ρXY )⊗ |vn〉 〈vn|Y , (2.1.7)

where {|vn〉} and {|wn〉} are two generally over-complete sets in the Hilbert space
of Y .

2.1.2 One-qubit quantum channels

We now review some notable examples of noisy channels acting on a single qubit.
All the channels that we describe here depend on one parameter, that physically
represents the strength of the coupling with the environment, or the time spent in
the channel. We renormalize this parameter such that it is in the range [0, 1] in all
our examples. We give the minimal representation, in terms of four or less Kraus
operators.
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Dephasing channel

This channel describes a process in which a quantum bit has a certain probability
δph
2

of adding a phase of π the off-diagonal terms of its density matrix. Otherwise,
with probability 1− δph

2
, it is unaltered by the channel. This is a simple description

of physical processes in which the interaction with the environment causes a loss of
coherence in one privileged direction.

The Kraus operators of the dephasing channel take the form

K
(ph)
0 =

√
1− δph

2
σ0, K

(ph)
1 =

√
δph

2
σz. (2.1.8)

This channel is unital. where we used that σ2
z = σ0.

To see if this channel is entanglement breaking, we apply it to a part of a maxi-
mally entangled state of two qubits |ψ〉+. The resulting state is

K
(ph)
0 |ψ+〉〈ψ+|K(ph)†

0 +K
(ph)
1 |ψ+〉〈ψ+|K(ph)†

1 =(
1− δph

2

)
|ψ+〉〈ψ+|+

δph

2
|ψ−〉〈ψ−| .

(2.1.9)

This is a Bell diagonal state, and as we have shown, it is separable if all the eigen-
values are smaller or equal than 1

2
. This is only the case if δph = 1.

Depolarising channel

The depolarising channel describes a process in which a qubit may be affected by
the three Pauli matrices with equal probability δpol

3
. There is also a probability

1−δpol that the qubit crosses the channel being unchanged. This models decoherence
processes due to an interaction with a large environment that does not have a
preferred direction.

The four Kraus operators are

K
(pol)
0 =

√
1− δpolσ0, K(pol)

x,y,z =

√
δpol

3
σx,y,z. (2.1.10)
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This channel is also unital for any value of δpol. Like before, it is easy to check if the
channel is entanglement breaking. Applying it to the Bell state |ψ+〉〈ψ+|, we obtain
a Werner state (a Bell diagonal state where three of the eigenvalues are the same):

K
(pol)
0 |ψ+〉〈ψ+|K(pol)†

0 +
3∑

n=1

K(pol)
n |ψ+〉〈ψ+|K(pol)†

n =

(1− δpol) |ψ+〉〈ψ+|+ δpol
I
4
.

(2.1.11)

This state is separable, i.e. the depolarizing channel is EBC, for δpol ∈ [1/2, 1].

Amplitude damping channel

This channel describes the process in which some of the energy is lost, i.e. a qubit
in the upper state |1〉 has a probability δad of decaying to the “ground state” |0〉.
The Kraus operators that describe this process are

K
(ad)
1 = |0〉〈0|+

√
1− δad|1〉〈1|,

K
(ad)
2 =

√
δad|0〉〈1|,

(2.1.12)

with 0 ≤ δad ≤ 1. This channel is nonunital. We have

K
(ad)
0 K

(ad)†
0 +K

(ad)
1 K

(ad)†
1 = |0〉〈0|+ (1− δad) |1〉〈1|+ δad |0〉〈0|

= (1 + δad) |0〉〈0|+ (1− δad) |1〉〈1|
(2.1.13)

The amplitude damping channel is entanglement breaking for δad = 1. To see this,
we apply it to a qubit in a Bell state, |ψ+〉〈ψ+|.

K
(ad)
0 |ψ+〉〈ψ+|K(ad)†

0 +K
(ad)
1 |ψ+〉〈ψ+|K(ad)†

1 =

1
2
|10〉〈10|+ 1− δad

2
|01〉〈01|+

√
1− δad

2
(|01〉 〈10|+ |10〉 〈01|) +

δad

2
|00〉〈00|

(2.1.14)
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In the standard basis, the partial transpose of this matrix has the form:

(I⊗ Φ) |ψ+〉〈ψ+|TY =


δad
2

0 0
√

1− δad

0 1−δad
2

0 0

0 0 1
2

0
√

1− δad 0 0 0

 . (2.1.15)

For δad 6= 1, this matrix has one negative eigenvalue 1
4

(
δad −

√
δ2

ad − 16δad + 16
)
.

We conclude that the amplitude damping channel is entanglement breaking only if
δad = 1.

2.2 Strategies for quantum communication

We are ready to introduce three classic communication protocols that take advantage
of pre-shared long-distance entanglement. The applications of long-distance entan-
glement are very broad, but these three protocols are very simple and effective, and
they are enough to motivate the content of this thesis.

2.2.1 Quantum dense coding

We mentioned in sec. 1.4 that the Holevo bound limits the amount of information
that can be extracted from N qubits to be at most N classical bits [43]. However,
if a qubit belongs to an entangled state it can carry the information of a pair of
classical bits. This does not violate the Holevo theorem because information is
actually stored in the larger entangled system. This strategy is known as quantum
dense coding or superdense coding.

Suppose that Alice and Bob are sharing a maximally entangled state, i.e. Alice
is holding a qubit A and Bob a qubit B in their respective distant labs, and the state
of the system is |φ+〉AB = 1√

2
(|00〉 + |11〉). Alice can perform one of four unitary

operations, described by the Pauli matrices, on her qubit A:

1. σ0 |φ+〉AB = |φ+〉AB;
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2. σx |φ+〉AB = |ψ+〉AB;

3. −iσy |φ+〉AB = |ψ−〉AB;

4. σz |φ+〉AB = |φ−〉AB,

in this way encoding her information in four orthogonal states of the two qubits.
When she sends qubit A to Bob, provided that there is no noise in the quantum
channel, he will be able to perform a measurement on the Bell basis of A and B,
and decode the two bits of Alice’s message without loss.

Protocols for dense coding with less entangled states are also possible [61, 62],
even deterministically [63].

2.2.2 Quantum key distribution

The secret of a safe cryptography is a good key distribution. Once Alice and Bob
have the same key, a random succession of bits, or another alphabet, they can use
it to encode and decode any message. To encode the message, Alice sums (modulo
two), the key to the message, and to decode it, Bob sums the same key to the
encoded message. If the key is completely random and as long as the message, it is
impossible to decipher the encrypted message without the key.

The first idea for entanglement-based quantum cryptography [64] was to use
entangled states to safely distribute a random key. If Alice and Bob share a Bell
state |φ+〉AB, they can perform local measurements, on the observables σy or σx and,
if the measurements are in the same basis, that were publicly shared in a classical
channel, the measurement outcomes, +1 or −1, will be perfectly correlated and can
be used to read the key. The key does not exist before the measurement and any
observation that a spy could make on the state could be detected by the legitimate
parties.

2.2.3 Quantum teleportation

Suppose that Alice wants to send Bob a particle. One way to do it is to send the
particle physically through a quantum channel.
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However, suppose that such a channel is not available at the moment. They could
just communicate, over the classical channel, the result of Alice’s measurement on
the particle, so that Bob can try to rebuild it in his lab. But the fidelity with the
original state, on average, would be less than 100%. A much better way is to use
their pre-shared entanglement (if they have any) to perform a quantum teleportation
protocol, transferring the state of one of her particles into one of Bob’s by using
only classical communication. Of course the initial entanglement must have been
originally distributed through a quantum channel, that is no longer available.

A teleportation protocol goes as follows [65]. Alice and Bob share initially a
maximally entangled state |φ+〉 between two of their qubits, A and B. In her lab,
Alice holds another qubit, C, in a generic unknown state |q〉 = α |0〉 + β |1〉, that
she wishes to transmit to Bob. So, the total initial state that they share is

|φ〉ABC = |φ+〉AB ⊗ |q〉C =
1√
2

(|00〉+ |11〉)AB ⊗ (α |0〉+ β |1〉)C . (2.2.1)

With some manipulation, we can rewrite it as

|φ〉ABC =
1

2

[
|φ+〉AC ⊗ (α|0〉+ β|1〉)B + |φ−〉AC ⊗ (α|0〉 − β|1〉)B +

|ψ+〉AC ⊗ (β|0〉+ α|1〉)B + |ψ−〉AC ⊗ (β|0〉 − α|1〉)B
]
. (2.2.2)

Alice performs locally in her lab a Bell measurement (a projective measurement onto
the Bell basis) over A and C, projecting the state into one of the terms in the above
sum. At this point, she tells the result to Bob via the classical channel that they
share. Depending on the measurement result, Bob applies a unitary Pauli operation
on B. If the outcome of the measurement was |φ+〉, he applies the operation σ0

that leaves the state identical. If the result was |φ−〉 however, he needs to apply the
unitary −iσy. If |ψ〉+ he applies σx and finally if Alice measured |ψ−〉, he applies the
matrix σz. At the end of this process, A and C are sharing a maximally entangled
state in Alice’s lab, while B is perfectly uncorrelated to them and in the state that
C had initially. Note that the knowledge of |q〉C is not required at any point of this
process.
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Figure 2.2: Figure taken from [66]. General entanglement distillation protocol. Alice and
Bob initially share many pairs of entangled systems, and they are only allowed to perform
local quantum operations and communicate with each other classically.

Alice and Bob have successfully teleported the state of C to Bob’s lab. Tele-
portation can be realized with non-maximally entangled states [37], although the
fidelity of the final state of B to the initial state of C in general is not 100%.

2.3 Manipulating long-distance entanglement

In this section, we will describe some protocols and techniques that can be used to
distill, create, or increase long-distance entanglement.

2.3.1 Entanglement distillation

In the three protocols of quantum communication that we have discussed, a pre-
shared, maximally entangled state was used. Similar protocols would also work
with a smaller amount of entanglement but they may be less effective, or less simple
to implement. Sometimes, then, it is better to have fewer copies of a maximally
entangled state than many of a less-than-maximally entangled state.

The name entanglement distillation refers to all the protocols in which n initial
copies of a bipartite entangled quantum system are transformed into m < n copies
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of maximally entangled (or, in general, more entangled) states without using a
quantum channel, i.e. only by LOCC operations. This is depicted in Fig. 2.2.

As an example, we describe a distillation protocol introduced in [67,68] and thor-
oughly described in [66], that is a revisitation of one of the first proposed distillation
protocols [69].

Suppose that Alice and Bob have each n qubits that form n copies of the Bell
diagonal state ρ(0)pair = A |φ+〉〈φ+| + B |ψ−〉〈ψ−| + C |ψ+〉〈ψ+| + D |φ−〉〈φ−|, with
A ≥ B ≥ C ≥ D. Recall from sec. 1.3.2 that this state is only entangled if A > 0.5.
They take two pairs of entangled qubits (pair 1 and pair 2) and perform a protocol
in four steps:

Step 1: Local rotations

Alice performs the rotations UA = 1√
2
(I−σX) on both her qubits A1 and A2 individ-

ually. Bob rotates his qubits with the unitary UB = 1√
2
(I + σX). At this point, the

state of the two pairs is ρ(1)
pair = A |φ+〉〈φ+|+D |ψ−〉〈ψ−|+ C |ψ+〉〈ψ+|+B |φ−〉〈φ−|.

Step 2: CNOT gate

Now, Alice an Bob apply a CNOT gate on their qubits, using the first one as a
control. The action of this gate in the standard basis is |0a〉 → |0a〉, |1a〉 → |1〉σx |a〉.
In other words, if the control qubit is in |0〉, it does nothing to the target qubit, if
the control is in |1〉, the gate flips the state of the target qubit. At this point, the
state is written as

ρ
(2)
12 =

(
A2 |φ+〉〈φ+|CD |ψ−〉〈ψ−|+ C2 |ψ+〉〈ψ+|+ AB |φ−〉〈φ−|

)
1
⊗ |φ+〉〈φ+|2

+
(
B2 |φ+〉〈φ+|CD |ψ−〉〈ψ−|+D2 |ψ+〉〈ψ+|+ AB |φ−〉〈φ−|

)
1
⊗ |φ−〉〈φ−|2

+
(
BD |φ+〉〈φ+|CB |ψ−〉〈ψ−|+BD |ψ+〉〈ψ+|+ AD |φ−〉〈φ−|

)
1
⊗ |ψ−〉〈ψ−|2

+
(
AC |φ+〉〈φ+|AD |ψ−〉〈ψ−|+ AC |ψ+〉〈ψ+|+BC |φ−〉〈φ−|

)
1
⊗ |ψ+〉〈ψ+|2 .

(2.3.1)

Step 3: measurement

Now Alice and Bob perform a measurement on the basis of σz on their second pair
of qubits.
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Step 4: phone call and post-selection

Alice and Bob communicate the measurement result to each other. If they obtained
the same result (00 or 11), they keep the first pair of qubits (success) and discard
the second pair, otherwise they discard everything.

If the protocol was successful, the state of the first pair is now

ρ
(s)
pair1 =

1

ps

(
〈00|2 ρ

(2)
12 |00〉2 + 〈11|2 ρ

(2)
12 |11〉2

)
=

1

ps

[
(A2 +B2) |φ+〉〈φ+|+ 2CD |ψ−〉〈ψ−|

+ (C2 +D2) |ψ+〉〈ψ+|+ 2AB |φ−〉〈φ−|
]
, (2.3.2)

with probability of success ps = (A+B)2 + (C+D)2. Notice that, for the discarded
state, ρ(u)

1 = 1
1−ps

(
〈01|2 ρ

(2)
12 |01〉2 + 〈10|2 ρ

(2)
12 |10〉2

)
, the largest eigenvalue is always

smaller than A, so that state is not getting closer to a maximally entangled one.
This protocol maps Bell diagonal states into Bell diagonal states, with coefficients
of the form 

A

B

C

D

→ 1

ps


A2 +B2

2CD

C2 +D2

2AB

 (2.3.3)

and it is successful, i.e. 〈φ+| ρ(s)
pair1 |φ+〉 > 〈φ+| ρ(0)

pair |φ+〉, as long as A > 0.5 and
B <

√
A − A. So, Alice and Bob may chose to start again and apply the same

protocol on the saved pair and another pair prepared in the same way. It was shown
in [67] and proven in [68] that, for a Werner state, i.e. if B = C = D = (1− A)/3,
this protocol alway converges to a Bell state after a sufficient number of iterations.
Notice that the Werner state always satisfies B <

√
A− A for A ≥ 0.

Of course this protocol is quite wasteful, since at least half of the qubits are
discarded. A full theory of entanglement distillation does not exist yet, and is not
known which is the optimal protocol for a given state.

It was shown [70] that a similar protocol to the one above is effective for any
two-qubit entangled states. The PPT entangled states are impossible to distill [71]
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and for this reason, it is often said that they have a “bound” entanglement.
Other classes of states display a different kind of bound entanglement [72], in the
sense that entanglement distillation is not feasible, although they are not separable.
These are states of tripartite systems composed of particles A, B and C, that are
entangled in one bipartition, such as A : BC, but separable in the other two B : AC

and C : AB. Such entanglement cannot be distilled between any pair of parti-
cles. These tripartite bound entangled states play a crucial role in entanglement
distribution, particularly with separable states [73].

2.3.2 Entanglement swapping

Entanglement swapping [74,75] is a protocol for entanglement distribution in which
two particles in an entangled state are teleported to a different place. A simple
example is given in [76]. Say that Alice has in her lab two maximally entangled
qubits, A and C, and Bob has another maximally entangled pair B and D:

|ψABCD〉 = |φ+〉AC ⊗ |φ+〉BD . (2.3.4)

This state can be rewritten also as

|ψABCD〉 =
1

2

[
|φ+〉AB⊗|φ+〉DC+|φ−〉AB⊗|φ−〉DC+|ψ+〉AB⊗|ψ+〉DC+|ψ−〉AB⊗|ψ−〉DC

]
.

(2.3.5)
At this point, Alice sends particle C to Bob, through a noiseless quantum channel.
When Bob receives the particle, he performs a Bell measurement on D and C.
Particles A and B are now maximally entangled. This protocol does not offer an
advantage compared to simply sending C through the quantum channel, at least in
the absence of noise. However, it is interesting to see that systems that have never
interacted directly with each other can get entangled. This is the basic principle of
what we will call “indirect distribution” later in the thesis.
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2.3.3 Entanglement distribution with separable states

In the entanglement swapping protocol illustrated above, one qubit that is maximally
entangled crosses the channel that separates Alice from Bob. In this sense, this
protocol is not very different from the one where B and A interact directly in Alice’s
lab before B is sent to Bob: in both cases a maximally entangled particle goes
through the channel and, in the end, a maximally entangled state is shared between
the labs.

In 2003, Cubitt et al. [73] showed that it is possible to entangle particles that
do not interact directly with each other, if they exchange a separable particle. The
protocols that respond to this property are often called EDSS (entanglement dis-
tribution with separable states) protocols. We briefly illustrate one of the protocols
proposed by Cubitt et al., as illustrated in fig. 2.3.

Step 1: Initially Alice holds two qubits, A and C, in her lab. The state at this
point is

ρ
(1)
ABC =

1

6

3∑
k=0

|ψk〉〈ψk|A ⊗ |ψ−k〉〈ψ−k|B ⊗ |0〉〈0|C +
1

6

1∑
k=0

|ij〉〈ij|AB ⊗ |1〉〈1|C , (2.3.6)

where |ψk〉 = 1√
2

(
|0〉+ eikπ/2 |1〉

)
. This state is separable in all bipartitions, being

explicitly written in a separable form.

Step 2: Now Alice performs a CNOT operation on two qubits, A and C, in her
lab. The state becomes

ρ
(2)
ABC =

1

3
|GHZ〉〈GHZ|+ 1

6

(
|001〉〈001|+ |010〉〈010|+ |101〉〈101|+ |110〉〈110|

)
.

(2.3.7)
This state is still separable in the partition C : AB. This can be seen from the
fact that the state is symmetrical under the exchange of qubits B and C, and the
operation cannot have affected the entanglement B : AC, that was initially zero.
Particle C, then is still separable from the rest of the system.
However, this state is entangled in the partition A : BC, and this is what makes
the distribution effective. The state is an example of a tripartite bound-entangled
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Figure 2.3: From [73]. Illustration of a discrete interaction protocol for entanglement
distribution. In (a), Alice makes particles A and C interact before sending C to Bob. In
(b), Bob performs an operation on B and C to localize the entanglement on A and B. The
carrier C does not need to be entangled at any time with A and B.

state, and this protocol is therefore one of the few known application of bound
entanglement.

Step 3: Particle C is sent to Bob, who performs another CNOT operation on
B and C. The state is

ρ
(3)
ABC =

1

3
|φ+〉〈φ+|AB ⊗ |0〉〈0|+

2

3
IAB ⊗ |1〉〈1|C . (2.3.8)

At this point, Bob can measure the state of C in the standard basis to get a Bell
state of A and B. Alternatively, he can apply a local quantum channel on B and
C described by the Kraus operators K1 = |0〉〈0|C , K2 = |0〉〈0|B ⊗ |1〉〈1|C , K3 =

|0〉 〈1|B ⊗ |1〉〈1|C . After the application of the map on ρ(3)
ABC and tracing out C, A

and B are left in the entangled state

ρAB =
1

3
(|ψ+〉〈ψ+|+ |00〉〈00|+ |10〉〈10|) . (2.3.9)

In the same article, a scheme was also proposed for entanglement distribution where
A and B both interact continuously with C, that stays separable at all times.

The possibility of distributing entanglement with a separable carrier is very sur-
prising, and has generated a lot of attention. In the following we discuss some of
the work that arose from this discovery.
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Other works on entanglement distribution

From the existence of EDSS protocols, the question naturally arises on what limits
the distribution of entanglement, if the entanglement that is sent can be zero. Two
groups [77, 78] have shown that, in a protocol where the state is already prepared,
the upper bound on the amount of gained entanglement is the carried quantum
discord

|EA:BC − EB:AC | ≤ DAB|C , (2.3.10)

where all are measured by relative entropy. This means that the amount of discord
that crosses the channel is in a way the “cost” of sending entanglement.

In [77] the pre-shared discord between the labs was shown to be another limit
on the distributed entanglement

|EA:BC − EB:AC | ≤ DAC|B, (2.3.11)

showing that protocols with separable states cannot work if A and B have not
previously interacted, directly or indirectly, with each other.

Ref. [77] also discussed the possibility of localizing the entanglement between
the lab (EA:BC) into the entanglement between the main parties. This is possible in
Cubitt’s protocol. In general, they showed that, if the entanglement EA:BC is not
PPT, and if the dimensions of B and A satisfy dB ≥ dA, there is always a unitary
operation UBC and a projective measurement that localizes the entanglement on A
and B only, discarding the carrier C.

A. Kay [79] studied how Bell diagonal states of two qubits can be used for
EDSS, using an initially uncorrelated carrier C, that interacts locally with A via a
controlled-phase gate. He proved that these protocols are effective for a surprisingly
large range of parameters, i.e. for any state except if the largest and the smallest
eigenvalue sum up to 1/2, i.e. λ1 + λ4 = 1/2, and the maximum increment in
negativity in this process is 1/16.

Some of the work by A. Streltsov et al. [80,81] also investigated the nature of the
states in distribution processes. In [80], it was discussed that the presence of discord
is not sufficient for the effectiveness of a distribution protocol and proved that no
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EDSS protocol can work with a state of rank less than three, if A is a qubit. In [81],
some analysis is made in order to unify all the properties of an effective distribution,
based on the entanglement measure of interest, the noise in the channel, or the
dimensions of the system. These considerations lead to conjecture that, whenever
available, the best possible protocol is to send a particle in a pure entangled state
(what we will call direct protocol), even through a noisy channel. Another interesting
result is that any pure state with arbitrarily little entanglement can outperform, for
some channel, a Bell state for a direct distribution of two qubits, if the measure
of interest is logarithmic negativity. This resembles the result in [82], according to
which the best pure state for direct distribution of singlet fraction is not a Bell state
if the channel is nonunital.

An alternative, promising, way of distributing entanglement, that we are not
considering in the rest of this thesis is by using quantum repeaters [83,84]. In these
schemes, entanglement is first distributed to close nodes, and then an entangled state
is teleported from one node to the other, thus avoiding to have particles crossing
long, noisy, quantum channels.

Protocols for entanglement distribution that are currently available are already
quite effective, with entangled photons being distributed over optical fibers long
hundreds of kilometers [85,86], especially aimed at safe key distribution [87–89].

Finally, it is worth mentioning that Cubitt et al.?s EDSS protocol inspired the
proposal of a protocol for distribution of secret classical information [90], in which
all the correlations that are communicated are public. This classical protocol makes
use of the concept of “bound information” [91, 92], that is an analog to quantum
entanglement in classical cryptography.

Experimental realizations of EDSS The possibility of “sharing entanglement
without sending it” [93], predicted by Cubitt et al., was verified experimentally in
2013 by three groups. One of these realizations, with three photonic qubits, is
described in Chapter 3. The other two were based on the theoretical proposals
in [94] and [95]. In these experiments [96, 97], the parties A, B and C were three
beams of light in separable Gaussian states, interfering with each other (A and C
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first, then B and C ) through beam splitters. It was proved that A and B become
entangled with each other, and yet C stayed separable with them at all times.
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3. Experimental entanglement distri-

bution with separable states

I took part in the realization of one of the first experiments on the possibility of
entanglement distribution via separable states. In this chapter, I describe the ex-
periment, that was realized in the University of Queensland, Australia, and the data
analysis that we performed in order to verify the success. The results presented in
this chapter were published in Ref [98].

3.1 The model

The protocol by A. Kay [79] described in sec. 2.3.3 is suitable for experimental
realization since both Bell diagonal states and a C-phase gate can be implemented
with photonic qubits.

In this protocol, two qubits A and B are at first in Alice’s and Bob’s lab re-
spectively, and they share a separable Bell diagonal state. The state we chose to
implement in the Bell basis reads

αAB =
1

2
|φ+〉〈φ+|+

1

4
|φ−〉〈φ−|+

1

8
|ψ+〉〈ψ+|+

1

8
|ψ−〉〈ψ−| . (3.1.1)

This state is separable because the largest eigenvalue is 1/2 (recall from the intro-
duction, section 1.3.2 that Bell diagonal states are separable if and only if the largest
eigenvalue is at most 1

2
).
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Its separable decomposition can be written as

αAB =
1

4

1∑
j=0

|zjzj〉〈zjzj|+
1

8

1∑
j=0

|xjxj〉〈xjxj|+
1

8

1∑
j=0

|yjy1−j〉〈yjy1−j| . (3.1.2)

Here |z0〉 = |0〉, |z1〉 = |1〉, |x0〉 = 1√
2
(|0〉 + |1〉), |x1〉 = 1√

2
(|0〉 − |1〉) and |y0〉 =

1√
2
(|0〉 + i |1〉), |y1〉 = 1√

2
(|0〉 − i |1〉) are the eigenvectors of the Pauli matrices σz,

σx, σy.

In the meantime, qubit C is generated in Alice’s lab in a mixed state, of the form

αC =
1

2
(I− 1

2
σx) =

1

2
(|0〉〈0|+ |1〉〈1|) +

1

4
(|0〉 〈1|+ |1〉 〈0|) , (3.1.3)

so the initial state of the three qubits is

α = αAB ⊗ αC . (3.1.4)

At this point, Alice applies a controlled-phase gate PAC on A and C. This unitary
gate can be interpreted as using C as a control, and applying the operation σz to
A if C is in the state |1〉, otherwise acts as the identity. The action of this gate can
be described as follows:

|00〉 → |00〉

|01〉 → |01〉

|10〉 → |10〉

|11〉 → − |11〉 . (3.1.5)

Our numerical sampling shows that this is the optimal gate for this protocol of
distribution. The initial state becomes

β = PAC αP†AC . (3.1.6)

By using the fact that PAC |φ±〉AB⊗|1〉C = |φ∓〉AB⊗|1〉C and PAC |ψ±〉AB⊗|1〉C =

|ψ∓〉AB ⊗ |1〉C , while if C is in the state |0〉, the state stays the same, it can be
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checked that β can be rewritten as

βABC =αAB ⊗ |0〉〈0|C + ᾱAB ⊗ |1〉〈1|C

− 1

4

[(
1

4
|φ+〉 〈φ−|AB +

1

8
|φ−〉 〈φ+|AB

+
1

16
|ψ−〉 〈ψ+|AB +

1

8
|ψ+〉 〈ψ−|AB

)
⊗ |0〉 〈1|C + h.c.

]
, (3.1.7)

We know that this state is separable in the partition B : AC, because it comes from
a unitary operation on only A and C on the state α. However, we want to be sure
that C also remains separable with the rest of the system. It is easy to verify that
the PPT criterion is satisfied, i.e. NC:AB(β) = 0, where NC:AB is the negativity
after partial transposition, that was introduced in Sec. 1.3.2. However, in these
dimensions, 2× 4, PPT is not a sufficient criterion for separability.

We can, however, show explicitly a separable decomposition of the state above:

βABC =
3

16
|z0z0〉〈z0z0| ⊗ |x0〉〈x0|+

3

16
|z1z1〉〈z1z1| ⊗ |x1〉〈x1|

+
1

8

∣∣φ+
〉〈
φ+
∣∣⊗ |z0〉〈z0|+

1

8

∣∣φ−〉〈φ−∣∣⊗ |z1〉〈z1|

+
1

16
|z0z1〉〈z0z1| ⊗ |x0〉〈x0|+

1

16
|z1z0〉〈z1z0| ⊗ |x1〉〈x1|

+
1

16

∣∣φ+i
〉〈
φ+i
∣∣⊗ |y1〉〈y1|+

1

16

∣∣φ−i〉〈φ−i∣∣⊗ |y0〉〈y0|

+
1

32
|z0z1〉〈z0z1| ⊗ |y1〉〈y1|+

1

32
|z1z0〉〈z1z0| ⊗ |y1〉〈y1|

+
1

32

∣∣ψ+
〉〈
ψ+
∣∣⊗ |y0〉〈y0|+

1

32

∣∣ψ−〉〈ψ−∣∣⊗ |y0〉〈y0| , (3.1.8)

where |ψ±i〉 = 1/
√

2(|00〉 ± i |11〉). This proves that the carrier C stays actually
separable.

On the other hand, we want the final state to be entangled in the partition
A : BC, otherwise the distribution scheme has not been successful. Negativity under
partial transposition is a sufficient condition for entanglement, in any dimension.
Here we have

NA:CB(β) =
1

16
> 0. (3.1.9)
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Figure 3.1: Entanglement distribution scheme. (a) A schematic representation of the proto-
col. (b) Experimental apparatus. Two pairs of separable photons are generated in a process
of spontaneous parametric downconversion in a β-barium borate crystal (BBO), using as
pump a frequency-doubled femtosecond Ti:Sapphire laser at 820 nm. Three photons are
labeled as A, B and C, while the fourth serves as a trigger. The photons are initial-
ized using a polarizing beam-splitter (PBS), a half wave plate (HWP) and a quarter wave
plate (QWP). The controlled-phase gate between A and C is realized through two-photon
interference at a partially polarizing beamsplitter (PPBS), TV = 1/3 and TH = 1 [99].
Finally, HWP, QWP and PBS, with a single-photon avalanche photodiodes (APD) and a
coincidence logic operate a projective measurement on each photon.

This is enough to conclude that such protocol produces a successful distribution
with a separable carrier.

3.2 The experiment

The protocol described in the previous section was implemented in Brisbane by
using photonic qubits. Fig. 3.1 illustrates the experiment.

The photons are generated in two couples of separable states, via type-I para-
metric down-conversion in a crystal of β-barium borate (BBO). Type-I parametric
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down-conversion is a process in which a nonlinear crystal (a crystal with an electric
susceptibility χ that depends on the amplitude of the electric field) is stimulated by
a laser (pump). The non-linear terms of the Hamiltonian of the field in the crystal
couple the vacuum with a state where two photons are present. These photons are
emitted simultaneously at random times, and are spatially separated and correlated
in polarization.

Both these two pairs are initially in the state |HH〉, meaning that their polar-
izations are linear and in the horizontal direction. In our notation, this corresponds
to the eigenstate of σz, |z0〉. However, their initial polarization can be turned into
any desired state of one qubit. For example, a half wave plate (HWP) with fast
axis oriented at 45 degrees from the horizontal direction and applied on the first
photon can turn its state into a vertical (V ) polarization |V H〉 = |z1z0〉, while if
the fast axis is oriented 22.5 degrees from the horizontal the state will turn the first
photon into an anti-diagonal (A) polarization |AH〉 = |x0z0〉, and so on. A quarter
wave plate, on the other hand can turn linear polarization into a circular one, and
so produce the states |y0〉 = |�〉 and |y1〉 = |	〉.

In this way, by initializing the single, unentangled, photons with wave plates, any
product state of four qubits can be produced. The system composed by A and B is
thus prepared in every experimental run in a pure state |ab〉 that are mixed in eq.
(3.1.2), and in the same way C is prepared in the eigenbasis of its initial state, that
can be written αC = 1

4
|x1〉〈x1| + 3

4
|x0〉〈x0|. Each of the settings that correspond

to the preparation of the pure states are observed for a time proportional to the
weight of the state in the mixture, effectively giving rise to (3.1.2). Of the four
photons that are generated in the parametric downconversion, three are our A, B
and C qubits, while the fourth one is used to lower the noise of the experiment, by
verifying the generation of one of the photons. Photons A, B and C go then through
three separate paths, thanks to optical fibers and wave guides.

Qubit B goes straight to single-photon avalanche photodiode (APD) detector,
after its polarization is measured through single qubit gates. Qubits A and C in-
terfere with each-other through a C-phase gate created, according to [99,100], with
three independent partially polarizing beam-splitters (PPBS).
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Each of these beam-splitters has a different transmission and reflection amplitude
for a vertically or horizontally polarized beam. The first PPBS, in which A and
C interfere, has a transmission amplitude for vertical polarization taV =

√
1
3
, and a

reflection amplitude raV =
√

2
3
while, for the horizontal polarization these amplitudes

are taH = 1 and raH = 0. The other two PPBS have tbV = 1, rbV = 0 and tbH =
√

1
3
,

rbH =
√

2
3
. To calculate the final state for a given initial one, we multiply the initial

state by these amplitudes, post-selecting the paths where a photon hits both the
detectors. All the other states are discarded. We obtain

|HH〉 → taHt
a
Ht

b
Ht

b
H |HH〉 =

1

3
|HH〉

|HV 〉 → taV t
a
Ht

b
V t

b
H |HV 〉 =

1

3
|HV 〉

|V H〉 → taV t
a
Ht

b
V t

b
H |V H〉 =

1

3
|V H〉

|V V 〉 → [(taV t
a
V ) + (iraV )(iraV )]tbV t

b
V |V V 〉 = −1

3
|V V 〉 . (3.2.1)

By comparing this description with eq. (3.2.1), it is seen that this setup reproduces
a C-phase gate with probability 1/9. Note the crucial role of the interaction between
two vertically polarized photons at the first PPBS. This generates the ‘-’ sign in the
last line of eq. (3.2.1), that makes the gate entangling.

After the gate, photons A and C individually undergo the same process for a
projective measurement as B. After about 387 hours and 30 000 counts in the
detectors, the experimental group performed the tomography and reconstructed
the probable form of the density matrix, from the numbers of photons that were
detected. The experimental density matrix, as showed in Fig. 3.2, is very similar to
the one that was theoretically expected. The fidelity [101] of these two matrices is
F(βexp, βideal) ≡ Tr((β1/2

expβidealβ
1/2
exp)1/2)2=0.98.
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Figure 3.2: Plot of the real (on the left) and imaginary parts of the final density matrix
in the ideal theoretical model (b), compared to the result of the tomography(a). The two
matrices appear very similar, and the fidelity results to be of 98%.

3.3 Results and data analysis

3.3.1 Error analysis and negativity of the state

Each parametric downconversion is a random phenomenon, and is expected to occur
at a random time. The probability of it happening in a given time interval is
proportional to the interval length. Also, each generation of a pair of photons is
independent of all the ones that preceded it. The probability that a given number
of such events occurs, then, is given by the Poissonian distribution:

P (k generations) =
λke−λ

k!
, (3.3.1)
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where λ is the average number of generations.

To evaluate the error associated with the measured state (fig. 3.2), a Monte Carlo
analysis was made, building a Poissonian distribution that has the observed photon
counts as average. In this way, it is possible to perform a tomography based on each
of these possible photon counts, generating 10 000 density matrices that are com-
patible with the observed data. Calculating the fidelity between each of these ‘error’
density matrices, the average fidelity and its error is obtained: Fest=0.967±0.007,
that is still very high, although different from the one measured through the photon
counts. This highlights a problem due to the finite number of observations that can
be in practice made in an experiment.

It is also possible to calculate the spectrum of each of these “error states” after
the partial transpose. The gained negativity is still significant NA:BC ∼ 0.052,
although smaller than the one that was theoretically expected (1/16 = 0.0625).
Unfortunately, some of the error density matrices had a negative partial transpose
in the cuts C : BA and B : AC, that means that possibly the protocol was not
made a separable carrier. To overcome this problem, we mixed the initial state with
a certain amount of white noise:

α̃ABC = (1− p)αABC +
p

8
I, (3.3.2)

the partial transpose of the resulting state is less negative, so that for p = 0.1667,
the error bars associated with NC:AB are entire in the positive quadrant, as is shown
in Fig. 3.3 (a). However, this mixture has also made the protocol less ‘successful’
in distributing entanglement, since NA:BC = 0.0172, as compared to the theoretical
0.0625 for the state without noise. Still, the final entanglement is non-zero and the
distribution is successful. Notice that the lines traced from the expected statistics
resulting from infinitely many counts (corresponding to the theoretical model) lie
outside the error bars. Fig. 3.3 presents the results for many values of p.
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Figure 3.3: (a) Minimum eigenvalue after partial transposition λmin for each bipartition
of βABC , against white-noise admixture p, as given by eq. (3.3.2). The dashed lines show
the expected values of λmin in the A : BC (C : AB and B : AC) bipartitions if infinitely
many counts were performed. The error bars are evaluated as one standard deviation from
the average value in the distribution shown in (b). (b) λmin for p = 0.1667. The solid
line is the λmin of the experimental state while the histogram represents the distribution
of λmin of the 10, 000 tomographic reconstructions with Poissonian distribution around
the measured counts (noise matrices).(c) Proportional number of noise density matrices
that have the desired positivity under partial transposition i.e. NC:AB = 0, NB:AC = 0
and NB:AC > 0. The solid line is obtained by computationally adding white noise to the
experimental matrix with p = 0. (d) Fidelity of the error matrices, represented by a box-
and-whisker plot, and the theoretical state obtained by mixing white noise with parameter
p = 0.1667. The data point is the fidelity of the experimental state to the ideal one.
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3.3.2 Separability of the carrier

Even though we know that the experimental matrix, mixed with p = 0.1667 white
noise, does not have NPT entanglement in the partition C : AB, we still need to be
sure that the state does not have any bound entanglement in such partition, since
the PPT condition is not sufficient for separability in these dimensions. For the
ideal case, it can be checked that the state is separable, since eq. (3.1.7) can be
rewritten in the explicitly separable form (3.1.8). For the experimental states given
by the error Monte Carlo estimation, verifying the separability is more complicated,
since the error density matrices did not have a strong symmetry like the ideal one.
However, thanks to some similarity with the theoretical model of all the matrices,
we were able to find the separable decompositions of all the noise matrices. This
was achieved as follows:

1. We randomly extract pure states |πj〉〈πj|, separable in the desired cut, and
add them to the theoretical set of product states in Eq. (3.1.8).

2. We write the general definition of a separable state as

ρAB|C =
∑
j

pj |πj〉〈πj| , (3.3.3)

where the index j runs through all the states of the set described in the step 1.

3. We try to recover the probabilities pj by equating the above definition of
separable state to the density matrices generated by the Monte Carlo algorithm
and trying to solve analytically or numerically such equation on Mathematica.

This method worked well with only about 3000 random product pure states for
each error matrix, so we were able to confirm that all the experimental states were
separable in the C : AB cut. For the A : BC cut the negativity of the partial
transposition is sufficient to ensure the presence of entanglement. In the remaining
cut B : AC the state should also be separable, as we started with separable state in
this bipartition and C-phase was acting locally with respect to it. However, we still
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verified the separability by the same method, confirming the absence of any form of
entanglement in the noise.

3.3.3 Discord bound

We checked whether the discord bound (2.3.10) was saturated by our experimental
states and by the noise matrices. Fig. 3.4 shows that this is not the case. A way to
numerically evaluate the realtive entropy of discord in the partition C : AB is

DAB|C(β) = min
ΠC

[S(ΠC(β))]− S(β), (3.3.4)

where S is the von Neumann entropy and ΠC denotes all the possible projective
measurements over qubit C, i.e. ΠC(β) = Π0βΠ0 + Π1βΠ1, where the projectors Π0

and Π1 form any orthonormal basis of the Hilbert space of C.

To find the upper bound on the relative entropy of entanglement we use its
definition

EA:CB(β) = min
ρA:CB

[S(β|ρA:CB)], (3.3.5)

where the minimum should be taken over all separable density matrices ρA:CB in
the partition A : CB. Recall that the relative entropy is defined as S(β|ρA:CB) =

−Tr(β log ρA:CB) − S(β). The minimization is through random sampling of pure
states, and we used an algorithm that, at each run, mixes the two previous separable
density matrices that have the lowest relative entropy with the one we wish to check.
This algorithm converges reasonably fast and allowed finding a value of the upper
bound to this entanglement measure that lies below the corresponding value for the
discord. Being a valid upper bound, the ‘real’ entanglement is verified to also be
inferior to the discord. We applied the same algorithm to about 100 of the error
matrices of the states in the Monte Carlo sampling used for the error evaluation.
However, we immediately notice that the expectation values of both discord and
entanglement lie outside the error bars calculated in such a way.

This again highlights a shortcoming of the statistical method used for the er-
ror evaluation that it is probably connected to the finite time used to take the
measurements. A simulation of this experiment with a finite measurement time was
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Figure 3.4: Quantum discord bounds the amount of distributed entanglement. The dots
represent the relative entropy of discord DAB|C for the experimental density matrix. The
blue lines represent the range of relative entropy of discord in which all the examined
100 error density matrices lie. The squares sign an upper bound on the relative entropy
of entanglement in the final state, EA:CB, and the red lines sign the range on which the
entanglement of the error matrices lie. The fact that the experimental dots lie outside the
matrices can be explained, analogously to Fig. 3.3, through the faultiness of a limited time
of measurement.

carried out and the result is reported in Appendix 3 of the experimental paper [102].
An analysis on what causes statistical errors in similar experiments can be found
in [103]. Since the relative entropy is a strongly non-linear function of the number
of photon counts in each detector, this imperfection made in the evaluation of the
states propagates, generating this abnormality in the plot.

3.4 Conclusions

An experimental realization of a EDSS protocol using photonic qubits was illus-
trated. In this experiment, a protocol using an initial Bell diagonal state has been
reproduced. The tomography revealed a fidelity with the theoretical protocol of 98%.
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The separability of the carrier and a positive increment in entanglement (measured
as negativity) have been successfully verified, within the error bar, by mixing the
ideal state with white noise. The analysis of the relative entropy of entanglement
and of discord and the calculation of the negativity however reveal a problem with
the error analysis, due to the finite measurement time.
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4. Excessive entanglement distribution

In this chapter, we provide a classification of entanglement distribution protocols,
based on the properties of the carrier parties. We mentioned in the introduction
that entanglement distribution is possible if the parties do not interact directly with
each other. Some examples are entanglement swapping, and Cubitt et al.’s protocol
with separable carriers [73]. We will call these indirect protocols.

Excessive protocols are a generalization of the separable carriers protocols. In
this case, we don’t impose for the carrier to be separable, but only that its en-
tanglement (in the chosen measure) is smaller than the one that is finally gained.
I will next show some properties of excessive protocols. Some of them generalize
properties of EDSS protocols, but others are, quite surprisingly, different.

Then, I will present a class of protocols based on a single parameter state, and
discuss the transition between excessive and non-excessive protocol, depending on
the particles that act as carriers. This reveals an interesting phenomenon that we
will call catalysis of excessiveness (similarly to the catalysis of entanglement that
I mentioned in sec. 1.1.1). Most results presented in this chapter are published
in [104]

4.1 Direct and indirect protocols

Our first classification for an entanglement distribution protocol is illustrated in
Fig.4.1. The goal of all distribution protocols is the same: Alice and Bob keep in
their respective labs two subsystems, A and B that are entangled with each other.
There are usually two ways this can be achieved.

79



Figure 4.1: Representation of direct and indirect protocols for the distribution on entan-
glement. In a direct protocol, the entanglement is carried by one of the main parties that
are meant to be entangled. In indirect distribution protocols, the carrier is one or many
ancilla. As examples of indirect protocols, we note uni-directional distribution schemes
(the model that is most explored in this thesis), and an entanglement swapping process.

We call direct protocols all the protocols in which the entanglement is carried by
one of the main subsystems. This is the simplest, most intuitive, way of distributing
entanglement. Particles A and B interact locally in Alice’s lab, and then one of
them, that we call B, is sent to Bob. Provided that entanglement was successfully
generated by the local interaction, and that such entanglement is not entirely dis-
rupted before B reaches Bob, Alice and Bob will eventually share two entangled
particles that they can use, if they need it.

Indirect protocols are more complex, because they involve the use of ancillary
systems. In these protocols, A and B are initially displaced, but their entanglement
is increased by interaction with a common subsystem. Entanglement swapping,
introduced in 6.3.6 is an example of indirect protocol. Another example is a unidi-
rectional distribution protocol, like the EDSS protocol described in Sec. 2.3.3: Alice
performs a local operation, in her lab, on her subsystem, A, and the carrier C. Then
she sends C to Bob, who in turn performs some operations aimed at increasing the
entanglement between A and B, after C has been discarded.

4.2 Excessive and non-excessive protocols

Our second classification comes from the first one, and in a way it is a quantitative
formulation of it. In both direct and indirect protocols, as we have defined them,
there is a carrier system, whether it is an ancilla or not. The change of entanglement
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Figure 4.2: Excessive and non-excessive protocols. (a) A and B initially share some corre-
lations, and then A and C interact locally in Alice’s lab. The initial entanglement is EAC:B.
(b) C travels from Alice to Bob, carrying some entanglement that amounts to EAB:C . (c)
Now Alice and Bob share some entanglement, given by EA:CB. If EA:CB−EAC:B > EAB:C ,
the protocol is excessive

between Alice and Bob’s lab is δE ≡ Ef−Ei. We call the entanglement of the carrier
system, while it is traveling, Ecom.

We already know, from the existence of EDSS protocols, that the entanglement
gain can exceed the entanglement that is communicated. This inspires our second
classification:

δE ≤ Ecom : Non-excessive protocol,

δE > Ecom : Excessive protocol.

In a direct protocol, the initial shared entanglement between Alice’s and Bob’s
laboratories is usually zero, because all the particles are at Alice’s at that point. The
carried entanglement is EA:B, provided that there is no noise in the communication
channel. In this case, δE = Ecom. Direct protocols are always non-excessive.

Another example is our main model of indirect protocols, unidirectional indirect
communication (we will just call them indirect protocols in the following). In this
case, the initial entanglement is Ei = E

(i)
A:B. We assume that, at the initial stage,
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and before any interaction with A or B, the ancilla C is completely uncorrelated
(factorized) to the rest of the system, i.e.

ρ = αAB ⊗ αC . (4.2.1)

Consequently we must have E(i)
A:B = E

(i)
AC:B. This assumption is usually verified in

realistic scenarios.

On the other hand, Bob can only act on B and C once the carrier has reached
his lab. In order to discard C and localize the entanglement on A and B, all he
has available are local operations in his lab, including unitary operations, quantum
channels or projective measurements on B and C. Then, the final entanglement
Ef = EA:B ≤ EA:BC (because the partial trace is a local quantum channel). There-
fore

Ef − Ei ≤ EA:CB − EAC:B ≡ Efin − Ein ≡ ∆E. (4.2.2)

Here, we defined ∆E as
∆E ≡ Efin − Ein. (4.2.3)

In summary, in our notation, Efin and Ein represent the initial and final entanglement
between the laboratories, before any localizing operation, and are in general different
from what we previously called Ef and Ei, the final and initial entanglement between
the main particles A and B. However, we always have

δE ≤ ∆E. (4.2.4)

We recall the theorem in [77], mentioned in 2.3.3, according to which, as long as
dim(A) ≥dim(B), there is a local operation in Bob’s lab that entirely localizes the
entanglement, measured by negativity, between the labs into the main parties. With
this operation, then, we obtain δE = ∆E as long as eq. (4.2.1) is satisfied.

Whenever we talk about indirect protocols, in the following, we will then use the
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following classification, unless stated otherwise:

EA:BC − EB:AC ≤ EC:AB : Non-excessive protocol,

EA:BC − EB:AC > EC:AB : Excessive protocol.

.

4.2.1 Excessive distribution and entanglement measures

Since all entanglement measures are not equivalent to each other, whether a protocol
is excessive or non-excessive may depend on the measure of choice. We will show
that some particular choices of measures, suitable for pure states, never allow any
excessive distribution to succeed. Other measures allow excessive protocols even
with pure states.

Sub-additive measures

Consider all the entanglement measures that have the sub-additivity property dis-
cussed in sec. 1.1.2. Von Neumann entropy or linear entropy of the reduced density
matrices of pure states are an example of these. These measures are sub-additive
because the total system always has less of the quantity of attention than the sum
of the two subsystems:

S(ρBC) ≤ S(ρB) + S(ρC). (4.2.5)

Consider, for example, S to be the Von Neumann entropy. Then if ρABC is a
tripartite pure state, S(ρBC) is a measure of the entanglement EA:BC . On the other
hand, S(ρB) = S(ρAC) = EB:AC and S(ρC) = S(ρAB) = EC:AB. Considering that,
Eq. (4.2.5) is equivalent to our definition of non-excessive protocols in Eq. (4.2.5).

This shows that excessive distribution is impossible with pure states, if the mea-
sure of interest is the Von Neumann entropy. The same argument applies to linear
entropy S(ρ) = 1−Tr(ρ2), and any other measure that is sub-additive and produces
a value of entanglement when evaluated on complementary subsystems. These mea-
sures are usually defined for pure states. At this point, it can look like, as well as
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EDSS, excessive distribution is not possible for pure states. However, somewhat
surprisingly, this is not the case for at least some entanglement measures that are
not sub-additive, as we show now.

Negativity

Negativity, introduced in sec. 1.3.2, is an entanglement measure that is relatively
easy to compute. Furthermore, as a measure, it is not sub-additive, so it might be
suitable for excessive protocols. As we mentioned in sec. 1.3.6, this quantity has
some operational meaning, for instance, it bounds the accuracy that the state allows
in a teleportation protocol.

We recall that, given a state of a bipartite system ρXY the definition of negativity
is

NX:Y =
‖ρPTXY ‖ − 1

2
, (4.2.6)

where ||ρPTXY || = Tr(

√
ρPTXY

2
) is the trace norm of the partial transpose of ρ with

respect to one of the subsystems X or Y .

We prove, however, that, as long as A is a qubit, excessive distribution of nega-
tivity is impossible for pure states. We first demonstrate the lemma:

Lemma 1. For any tripartite pure state, we have:√
2

dA(dA−1)
NA:CB ≤ NAC:B +NAB:C , (4.2.7)

where dA is the rank of the reduced state of A.

Proof. Since the state is pure, we can always write the Schmidt decomposition (Sec.
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1.1.1) of it for all the three possible bipartitions:

|ψ〉 =

dA∑
α=1

√
pα |α〉A |φα〉BC

=

dB∑
β=1

√
qβ |β〉B |χβ〉AC

=

dC∑
γ=1

√
rγ |γ〉C |ξγ〉AB.

(4.2.8)

As it can be easily verified by performing the partial transpose of the density ma-
trices, written on the Schmidt basis, the negativities can be written in terms of the
Schmidt coefficients as:

NA:CB =
1

2

∑
α 6=a

√
pαpa,

NAC:B =
1

2

∑
β 6=b

√
qβqb,

NAB:C =
1

2

∑
γ 6=c

√
rγrc.

(4.2.9)

Similarly, if we calculate the linear entropy of the reduced states, we see that its
sub-additivity condition also can be written in terms of the Schmidt coefficients:

∑
α 6=a

pαpa ≤
∑
β 6=b

qβqb +
∑
γ 6=c

rγrc. (4.2.10)

The proof proceeds from geometrical considerations: the sum on the left hand side of
eq. (4.2.10) is the length of the dA(dA−1)−dimensional vector that has components
~v = (

√
p1p2,

√
p1p3, . . . ,

√
pdA−1pdA). Taking the scalar product of this vector with

a uniform vector in the same space, ~w = (1
2
, 1

2
, . . . , 1

2
), we obtain NA:CB from Eq.

(4.2.9). The Cauchy-Schwartz inequality, applied to vectors ~v and ~w, guarantees
that

4

dA(dA − 1)
N2
A:CB ≤

∑
α 6=a

pαpa. (4.2.11)

85



Furthermore, by considering that negativity is a positive number, we have

(NAC:B +NAB:C)2 ≥ N2
AC:B +N2

AB:C

=
1

4

∑
β 6=b

√
qβqb

∑
β′6=b′

√
qβ′qb′

+
1

4

∑
γ 6=c

√
rγrc

∑
γ′6=c′

√
rγ′rc′

≥ 1

2

∑
β 6=b

qβqb +
1

2

∑
γ 6=c

rγrc.

(4.2.12)

The last inequality holds because, in the sums, we will see the combination of certain
indices two times. For instance we obtain qβqb both when we multiply the term
β = β′ with b = b′ and also when we multiply β = b′ with b = β′. All the remaining
addends are positive or zero. Combining (4.2.11) and (4.2.12) with the inequality
(4.2.10), we have proven the lemma (4.2.7).

The previous lemma has an immediate consequence in terms of excessive proto-
cols with negativity, if A is a qubit:

Theorem 1. For any pure tripartite state, where A is a qubit:

NA:CB ≤ NAC:B +NAB:C , (4.2.13)

.

Proof. Since A is a qubit, we must have dA = 2. In this case, (4.2.7) is equivalent
to the above statement.

This shows that no excessive protocols with negativity are possible, by using
only pure states.

However, if the rank of the subsystem A is at least 3, the above lemma does not
say anything about whether excessive protocols exist or not. The surprising answer
is that they do exist. For instance, consider the pure state:

|ψ〉 =
1√
3

(|200〉+ |001〉+ |110〉), (4.2.14)
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for which we have NAB:C =
√

2/3 ≈ 0.471 and NA:CB −NAC:B = 1−
√

2/3 ≈ 0.529.
The distribution with this initial state is thus excessive!

This result is different from the corresponding one with EDSS protocols. This
class of protocols just cannot happen with pure states, no matter how entanglement
is measured, because in this case, the three parties are, at all times, in a pure
state of the form |φAB〉 ⊗ |φC〉. For such state, EA:BC = EA:B = EB:AC , hence the
entanglement between the labs cannot increase by sending C between them.

Logarithmic negativity

Logarithmic negativity,

LX:Y = log2 ‖ρPTXY ‖ = log2(2NX:Y + 1). (4.2.15)

is an entanglement monotone that is closely related to negativity. However, it has
some different properties, for instance it is not a convex function, as was mentioned
in sec. 1.3.3. It also has an important operational meaning, as it is proven to be
an upper-bound to the distillable entanglement in the state. We show that this
measure also allows excessive distribution with pure states.

If A is a qubit however it is not possible, which is a direct consequence of the
result for negativity:

Theorem 2. For a tripartite pure state where A is a qubit the logarithmic negativity
satisfies

LA:CB − LAC:B ≤ LAB:C . (4.2.16)

Proof. From the inequality (4.2.13), we multiply both sides by two and add one.
We then take the logarithm:

log2(2NA:CB + 1) ≤ log2(2NAC:B + 2NAB:C + 1)

≤ log2(2NAC:B + 2NAB:C + 1 + 1)

≤ log2(2NAC:B + 1) + log2(2NAB:C + 1).

(4.2.17)

The last two inequalities follow, respectively, from the monotonicity and the con-
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vexity of the logarithm. This, together with the definition (4.2.15), proves the
theorem.

The excessiveness of the logarithmic negativity is a stronger condition than the
one of the negativity. The above proof can be repeated for any protocol where
negativity displays non-excessiveness. In other words, if a protocol is excessive for
logarithmic negativity, it is also excessive for negativity, but not vice versa.

For instance, the state in Eq. (4.2.14) does not violate the inequality (4.2.16)
for logarithmic negativity, nor any other state we have sampled in which dA = 3.
Thus, if dA = 3, we were not able to prove or disprove the existence of an excessive
protocol with pure states.

However, we did find an example for dA = 4. In the state

|ψ〉 =
1√
103

(10 |000〉+ |110〉+ |201〉+ |311〉) , (4.2.18)

LAB:C ≈ 0.352, while the entanglement gain is LA:CB − LAC:B ≈ 0.363.

Excessive protocols and unification of quantum correlations

The existence of examples of pure states that allow excessive distribution may have
a consequence on the search for a unified measure for general quantum correlations
(entanglement and discord). As we discussed in sec. 1.4.3, the known measures of
bipartite discord that are comparable to bipartite entanglement have two common
properties:

• the measure for discord reduces to the measure for entanglement for pure
states. This must be true, since in pure states separability in a bipartition is
just equivalent to classicality, because bi-separable pure states are factorized.

• discord is usually the bound for the entanglement increment, as in Eq. (1.4.3).

Both these conditions cannot be satisfied by a unified measure involving negativity
or logarithmic negativity, since a state such as (4.2.14) would violate at least one of
them.
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We must conclude that, if a unified measure of quantum correlations involving
such measures existed, it should have some different properties from relative entropy
and other measures that are known so far.

4.2.2 Some excessive protocols

Apart from the excessive protocols that can be realized with the pure states we
listed above, we are now ready to illustrate an interesting class of protocols, using
mixed states of five qubits. These states depend on a single parameter. Depending
on which partitions we consider (in the distribution perspective, which subsystems
carry the entanglement), this class of states covers all different cases of distribu-
tion protocol: excessive, non-excessive, and with separable or entangled carriers.
Furthermore, it allows us to highlight an interesting phenomenon, that we called
catalysis of excessiveness, similarly to the entanglement catalysis that was men-
tioned in sec. 1.1.1. This phenomenon was already present in previous literature,
but never explicitly noted.

We now describe how the states are constructed. We start from an Absolutely
Maximally Entangled (AME) state of five qubits [27,105], as described in sec. 1.2.3:

|ψ〉 =
1

4

(
|00000〉+ |10010〉+ |01001〉+ |10100〉

+|01010〉 − |11011〉 − |00110〉 − |11000〉

+|11101〉 − |00011〉 − |11110〉 − |01111〉

+|10001〉 − |01100〉 − |10111〉+ |00101〉
)
. (4.2.19)

Recall that AME states have the property of being maximally entangled in any
partition that is considered. We apply locally two depolarizing channels (introduced
in sec. 2.1.2), acting on two of the qubits (labeled 1 and 2) of the 5-qubit AME
state. These channels have the following Kraus operators:

K
(1)
0 =

1√
2
I, K

(1)
i =

1√
6
σi,

K
(2)
0 =

√
qI, K

(2)
i =

√
1− q

3
σi.

(4.2.20)
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Note that the channel acting on particle 2 depends on a continuos parameter, q,
while the one that acts on qubit 1 is fixed.

The depolarizing channel acting on qubit 2 is entanglement breaking (i.e any
subsystem that crosses it becomes separable with the rest of the system) as long as
the parameter 0 ≤ q ≤ 0.5, as proved in sec. 2.1.2. On the other hand, the channel
acting on particle 1 is always entanglement breaking. With this construction the
separability of the state is as follows:

• E1:2345 = 0 for any q;

• E2:1345 = 0 for 0 ≤ q ≤ 0.5;

• E12:345 = 0 for 0 ≤ q ≤ 0.5;

• The state is entangled in any other bipartition.

We are now ready to analyze how this state can allow the implementation of
excessive and non-excessive protocols, by choosing different groups of particles to
play the part of the carrier C and of the main parties A and B.

For instance, let us look at fig. 4.3, where we plot the logarithmic negativities for
some of the partitions. Here, Alice holds three of the qubits, A = {2, 4, 5}, and Bob
the separable qubit B = {1}. The remaining entangled qubit C = {3} is used as a
carrier. The initial entanglement is EB:AC = E1:2345 = 0, for any q, since qubit 1 is
prepared in a separable state. As the plots in fig. 4.3 show, the final entanglement
EA:BC = E245:13 is always above the communicated one EC:AB = E3:1245, making the
protocol excessive, except when q = 0, 1

4
, 1.

Now, if we exchange B with C, making particle 1 the carrier and particle 3 Bob’s
system B, we see from the same figure 4.3 that the protocol is still excessive, but
the carrier is now separable.

A similar analysis can be performed by considering different partitions, as made
in fig. 4.4. Now Alice is holding three of the qubits, one of which is the separable
qubit 1. So A = {1, 4, 5}, while B = {2} and C = {3}. The initial entanglement,
then, is zero for 0 ≤ q ≤ 0.5. Notice that the range of q where the protocols is
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Figure 4.3: The partitions used to calculate this graph are A = {2, 4, 5}, B = {1} and
C = {3}. Since qubit 1 is separable from the rest of the system, we have Ein = E1:2345 = 0.
The communicated entanglement, however, evaluated as logarithmic negativity, is always
strictly positive and the final entanglement is always larger than the initial one, except for
some special points: q = 0, 1

4 , 1. Everywhere else, the protocol is excessive.
By exchanging qubits 1 and 3 we obtain a different excessive protocol, with a separable
carrier.

excessive is now very narrow, 0.4 ≤ q ≤ 0.55, and it is partially realized with a
separable initial configuration, because E12:345 = 0 for q ∈

[
0, 1

2

]
.

Finally, we analyze the configuration A = {4, 5}, B = {1, 2} and C = {3}, as
plotted in fig. 4.5, to expose the catalysis of excessiveness. Here the final entangle-
ment is larger than the one plotted in fig. 4.4. Also, the interval in q in which the
protocol is excessive is now broader. However, the only difference with the previous
case is to have always separable qubit 1 initially with Bob. Note that this does
not affect the initial entanglement. In this case, excessive protocols obtained by
preliminarily sending a separable particle are more effective, even though the initial
entanglement is the same. Particle 1 acts here as a catalyst.

In retrospect, the same phenomenon is present in the paper by Cubitt et al. [73],
where the original protocol for distribution with a separable carrier is described, as
well as in the protocol used for the experiment described in the previous chapter.
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Figure 4.4: The partitions here are A = {1, 4, 5}, B = {2} and C = {3}. For 0.4 < q ≤ 0.5
we have an excessive protocol, with separable initial state. For 0.5 < q < 0.55 we have
another excessive protocol, but now the initial, communicated and final entanglement are
all nonzero. Everywhere else the protocol is non-excessive.

Consider the alternative scenario in which only the separable carrier is sent to Bob,
while particle B stays with Alice the whole time. Clearly, no entanglement is gained
in this way. On the other hand, if the separable particle B is initially sent, without
altering the initial entanglement, we know that sending the carrier C will allow a
successful excessive distribution. Particle B is then a catalyst for this excessive
protocol.

4.3 Conclusions

We have characterized many classes of protocols for entanglement distribution. The
simplest way to prepare an entangled state between two distant parties is by per-
forming what we called a direct distribution protocol. However, a larger and more
complex set of possibilities is offered by indirect distribution, whereby an ancilla is
used to increase the entanglement between two already distant quantum systems.
For instance, in indirect distribution protocols, entanglement can be sent without
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Figure 4.5: This protocol illustrates the phenomenon of catalysis of excessiveness. Having
sent qubit 1 does not affect the initial entanglement, as is seen by comparing with fig. 4.4.
However, it makes the entanglement gain larger, and also increases the interval in q on
which the protocol is excessive.

being communicated (EDSS protocols) or, more in general, the entanglement gain
can exceed the communicated entanglement (excessive protocols). While EDSS pro-
tocols are not possible with pure states, excessive protocols with an entangled carrier
can be performed when the total state is pure for some entanglement measures.

A class of protocols was illustrated, showing how the entanglement gain and
excessiveness (in logarithmic negativity) depend on a single parameter used in the
5-qubits state preparation. Another factor is what particles are used as carriers.
We showed that separable particles can also, in some cases, act as “catalysts”, mak-
ing the distribution both more effective and excessive, without affecting the initial
entanglement.
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5. Entanglement distribution through

noisy channels

In the last chapters, we have only considered a transmission through an ideal chan-
nel. However, in reality it is very difficult to avoid noise, especially if the commu-
nication has to happen through long distances. The interaction with all the other
quantum particles in the environment can make a pure state mixed, or make it lose
coherence and, if such particle started as entangled, some of the entanglement that
was carried will probably be lost. From this perspective, indirect protocols can be
helpful. Direct distribution only allows as much entanglement to reach the other
location as it is communicated, thus making the loss in the channel important. On
the other hand, indirect protocols allow excessiveness, i.e. beat the limit imposed
by the communicated entanglement. And even if all entanglement is destroyed, and
the carrier reaches the other lab being separable, it is still possible to have a signif-
icant gain, because of the existence of EDSS protocols. In particular, entanglement
braking channels (EBC) do not allow any direct distribution. However, whether
they allow indirect protocols, that inevitably will be EDSS is not trivial at a glance.
However, we will show that this is not the case.
This work was published in ??.

5.1 Optimal direct protocol

We now prove that, for any noisy channel and for convex entanglement monotones,
the best direct protocol is made by sending qubit B through the channel if A and
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B start in a pure state. Let us call our quantum channel Φ acting on B, and a
quantum mixed state of two qubits, ρAB.

In the Lewenstein-Sanpera decomposition [106], any mixed state of two qubits
can be written as a mixture of a separable mixed state and a pure state. We apply
this to the initial density matrix ρAB:

ρAB = ασAB + (1− α) |ψ〉 〈ψ| , (5.1.1)

where α ∈ [0, 1] is a real number and σAB is a separable state. Then, from the
linearity of the map, we have

ΦB(ρAB) = αΦ(σAB) + (1− α)Φ(|ψ〉 〈ψ|). (5.1.2)

And, if our chosen entanglement measure E is convex

E(ΦB(ρAB)) ≤ αE (ΦB(σAB)) + (1− α)E (ΦB(|ψ〉 〈ψ|) (5.1.3)

= (1− α)E(ΦB(|ψ〉 〈ψ|) ≤ E(ΦB(|ψ〉 〈ψ|). (5.1.4)

Here, we assumed that the measure of choice is zero or positive on separable states.
We conclude that any mixed state of two qubits can always be outperformed by a
pure state, for any channel present between them. In [81], this result was presented,
but for the more general case where B has any dimensions. The optimal pure state,
however, does not need to be a maximally entangled one for all channels, as was
shown in [81,82].

The question on whether there exists an indirect protocol that can improve
the optimal direct protocol with pure states arises, and is still unanswered, to the
best of my knowledge. Our attempts at a proof and sampling of protocols lead to
believe that direct protocols with pure states are the most effective protocols, for
any channel. However, although almost perfectly pure states can be prepared in a
lab, they are not always cheap or available, due to the noise that may be present in
the location where the state is prepared. In this case, mixed states might be cheaper
overall.
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5.2 Distribution through entanglement breaking chan-

nels is impossible

Our model of indirect distribution allows Bob to extract entanglement from a sep-
arable carrier that Alice sends (EDSS protocol). It is not completely unreasonable,
then, to expect that, in some cases, this protocol for distribution could be effective
even when the communication channel is entanglement breaking. However, we show
that this is not the case, even indirect distribution is always ineffective if performed
through any entanglement breaking channel. The reason is that the transformation
that EBC performs can be described through a LOCC operation.

We prove the following theorem:

Theorem 3. In any indirect protocols where the communication channel is entan-
glement breaking, the following inequality holds:

E
(f)
A:BC ≤ E

(i)
B:AC . (5.2.1)

Proof. We first observe that the entanglement in the partition A : BC, after particle
C goes through an EBC is always less than that of a classical state. The state after
the channel can be written as in the right hand side of Eq. (2.1.7), with X = A,B:

E
(f)
A:BC =EA:BC

(∑
n

TrC(|wn〉 〈wn| ρABC)⊗ |vn〉 〈vn|C

)

≤EA:BC

(∑
n

TrC(|wn〉 〈wn| ρABC)⊗ |Vn〉 〈Vn|C

)
,

(5.2.2)

where |vn〉 and |wn〉 form two over-complete sets in the Hilbert space of C and |Vn〉
form a basis on a larger Hilbert space.

The reason why this holds is that you can always go from an over-complete,
non-orthogonal to an orthogonal basis set through a local operation on C. Now
note that since the |Vn〉 vectors are orthogonal, the state in the right hand side of
Eq. (5.2.2) is classical, i.e. it has zero discord. By using the discord bound, given
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in sec. 2.3.3,
|EA:BC − EB:AC | ≤ DAB|C = 0, (5.2.3)

we see that the entanglement of such state is the same in the partitions A : BC and
B : AC:

EB:AC

(∑
n

TrC(|wn〉 〈wn| ρABC)⊗ |Vn〉 〈Vn|C

)
=

EA:BC

(∑
n

TrC(|wn〉 〈wn| ρABC)⊗ |Vn〉 〈Vn|C

)
.

(5.2.4)

Since you can always construct a POVM that goes from ρABC to the state on the
left hand side of Eq.(5.2.4), it also holds

EB:AC

(∑
n

TrC(|wn〉 〈wn| ρABC)⊗ |Vn〉 〈Vn|C

)
≤ EB:AC(ρABC) = E

(i)
B:AC . (5.2.5)

By combining eqs.(5.2.2), (5.2.4), (5.2.5), we prove that the final entanglement be-
tween the laboratories is always bound by the initial one, as in the statement (5.2.1).
Note that the initial entanglement E(i)

B:AC does not change if we allow a unitary op-
eration on A and C, so this result extends to all the protocols that we described so
far.

5.3 Some distribution protocols in a noisy environ-

ment

The fact that EBC do not allow indirect distribution, however, does not mean that if
another channel disrupts the entanglement of a particular carrier, the entanglement
distribution will not be effective. Then, as one may expect, excessive protocols,
where entanglement of the carrier can be small, may offer an advantage compared
to non-excessive ones. We now explore this statement in some special cases of
entanglement distribution in a noisy environment.

At first, we study some cases that show how the existence of excessive protocol
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Figure 5.1: Indirect distribution of entanglement via noisy channel. (a) A and B are
initially displaced and share some correlations when C interacts with A. (b) C is sent
through a noisy channel to Bob. (c) The final entanglement that Alice and Bob share is
EA:BC .

allows the distribution of entanglement over a broad set of parameters of some
particular states, whether the initial condition is of A and B being displaced or not.
We then discuss how the presence of noise, not only in the channel, but also in the
laboratories where the particles are created and stored could affect the distribution
protocols.

5.4 Indirect protocol through a noisy channel

Our idea of indirect protocol of entanglement distribution through a noisy channel
is represented in Fig. 5.1. Particles A and B are initially displaced, sharing an
initial entanglement E(0)

A:B in the state ρAB. Particle C is completely uncorrelated to
the rest of the system in its own state ρC , until Alice performs a unitary operation
UAC on particles A and C. At this point, we evaluate the initial entanglement as
EAC:B, in the state ρABC = UAC(ρAB ⊗ ρC)U †AC . Then, Alice sends C through
the communication channel she shares with Bob, where the state of the system is
affected by quantum noise acting on C. When C reaches Bob, the final entanglement
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between the labs is EA:BC over the final state ρfABC , that is given by:

ρfABC =
∑
n

KnρABCK
†
n. (5.4.1)

Here the set of Kraus operators {Kn} models the noise in the quantum channel
and only acts on C. To represent these channels we use the three typical one-
qubit channels, that we introduced in 2.1.2: the dephasing, the depolarizing and the
amplitude damping channel.

Our protocol is similar to the one realized in the experiment described in chapter
3. In the protocol, we assume initially that C is uncorrelated to A and B and in
the mixed state of the form

αC =
1

2
(I2 + sσx), , (5.4.2)

where s ∈ [−1, 1], while A and B are in a Werner state

αAB = p |φ+〉 〈φ+|+
(1− p)

4
I4. (5.4.3)

In this state, A and B are entangled for p > 1/3. The two-qubit unitary operation
that Alice has available in her lab is a controlled-phase gate, that acts on A and C
as described in chapter 3. This operation happens to be, according to our numerical
simulations, the entangling gate that allows the most entanglement to be distributed,
in this particular protocol.

To show how the presence of noise in the channel affects the efficacy of this
protocol, in Fig. 5.2 the negativity gain is plotted as a function of the noise of the
state parameters. Also, the range of parameters in which the protocol is excessive
is marked by the black line. In first row of plots (a) to (c), we allow the initial state
of the carrier C to change its purity parameter, fixing the initial state of A and
B. In this case, we observe the following properties of the protocol, regarding the
advantages or disadvantages of excessive protocols:

• given a value of a noise parameter of any of the three channels, the protocol
that allows maximal negativity gain is always the one where C starts in a pure
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Figure 5.2: Negativity gain in the protocol depicted in Fig. 5.1. in the columns, the nature
of the noise in the channel varies. Inside the thick, black line, the protocol is excessive.
Particles A and B start in a Werner state, Eq. (5.4.3), while C in a mixed state of the form
(5.4.2). The plots (a) to (c) present the gain as a function of the parameter of the carrier
state, s in Eq.(5.4.2). In these plots, the entanglement parameter of the Werner state is
fixed to p = 0.34, but qualitatively the same plots are obtained for different p. Notice that
the optimal gain is reached if C is in a pure state. These cases lie outside the excessive
region, but only for low noise. The lower row of plots, (d) to (f), present the negativity
gain as a function of the purity of the A and B, p in Eq. (5.4.3). For these plots s = 2/3
but again, similar results are obtained for different values of s. Notice that the optimal
protocol is for p = 1/3 and, for any noise, whenever it is effective, it is always excessive.

state, which is consistent with the result presented for direct distribution;

• the protocol is in the non-excessive region as long as the noise is weak (δ close
to zero);

• if the noise is strong enough, the communicated entanglement is largely dis-
rupted, and the optimal state of C falls in the excessive region. In this case,
the existence of excessive protocols allows an effective distribution to occur
even though a very noisy channel is used;

• the excessive protocol is verified for a very broad set of parameters, making
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it easier to realize for Alice and hence more robust to the errors in the state
preparation.

In the second row, (d) to (f), we complete the picture by fixing the state of C, and
plotting the negativity gain when the purity of the Werner state parameter p is
allowed to change. Here are some observations related to these plots:

• the region where excessive protocols occur is not as broad as in the previous
instance;

• however, the protocol with the greatest increment is always, for any type of
channel and noise parameter, well inside the excessive region;

• the protocols with the largest entanglement gain are the ones where the Werner
state is at the “border of separability”, for p = 1/3.

We conclude that, in this protocol, excessiveness offers an advantage if the noise is
strong or if the initial state of A and B is fairly mixed and cannot be purified.

5.5 Direct-Indirect protocol through a noisy chan-

nel

The protocol described so far assumes that particles A and B are already far from
each other, yet prepared in an entangled state, or at least that they are sharing some
form of quantum correlation. Achieving this initial configuration can be difficult,
however. We are expecting Alice and Bob to be able to prepare this configuration
through the noisy channel that separates their labs and in our scenario this channel
cannot be avoided.

Fig. 5.3 depicts a protocol that includes the preparation of the initial configura-
tion. Alice prepares A and B, in her own laboratory, in the Werner state, Eq. (5.4.3).
Next, she sends qubit B, through the noisy channel, to Bob. This is the direct part
of the distribution. Alice and Bob likely share some entanglement, or some other
form of correlation at this stage. Now the indirect part of the distribution begins.
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(a)

(b)

(c)

(d)

Figure 5.3: Direct distribution, followed by an indirect one, through a noisy channel.
(a)Alice correlates A and B locally. (b) B reaches Bob through the noisy channel, and A
and C interact with each other. (c) Finally C is sent to Bob, (d) increasing the entangle-
ment shared with Alice.

Alice uses initial state of the qubit C, given in Eq. (5.4.2) and the c-phase operation,
just as it was described in the previous section. This is the stage at which the initial
entanglement is evaluated as EB:AC

We now want to compare the effectiveness of the excessive protocols to the non-
excessive ones, as we did before. But we would also like to see if, and in which cases,
the indirect distribution is actually useful, when the direct one is present.

The considerations that arise by looking at plots (a) to (c) in fig. 5.4, where we
vary the initial purity of C are very similar to the case with only indirect protocols
shown in fig. 5.2. As before, we see that, whenever possible, having a pure C offers an
advantage. The non-excessive region is, in this case, amplified. However, sufficiently
high noise parameters in the channel make the optimal protocol excessive. We also
observe that the excessive region is still significantly broader, for strong noises, than
the non-excessive one. Note that these plots are realized by fixing p = 0.34. This
value is very close to the border of separability of the Werner state. In nearly all the
region of parameters shown, then, the state of B is separable after it reaches Bob.

The lower plots, (d) to (f) in fig. 5.4, show how having added the possibility of
performing a second step in the distribution helps Alice and Bob achieving a highly
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Figure 5.4: Gain in entanglement, measured as negativity, achieved in the indirect part
of the distribution described in Fig. 5.3. The thick line contains the region where the
protocol is excessive, the dashed line describes the region where a positive entanglement
gain is achieved by only sending B (direct protocol). In the graphs (a) to (c), the parameter
of the Werner state is fixed, p = 0.34, but the plots obtained for different p are qualitatively
similar. Similarly to Fig. 5.2, the maximum gain is obtained with C prepared in a pure
state. In the plots (d) to (f), the gain is presented as a function of the parameter of the
Werner state of A and B, i.e., p in Eq. (5.4.3). C is initially in a mixed state, (5.4.2) with
s = 2/3. Similar qualitative results are seen for different values of s. The largest gain is
achieved with excessive protocols (whenever possible) and as in Fig. 5.2 the optimal value
of p is at the border of separability of A and B (dashed line). If A and B are quite mixed
(p ≤ 0.65 for no noise), the indirect part of the protocol improves the direct distribution
of entanglement, that is just impossible outside the dashed region.

entangled state. In these plots, we trace both the region of parameters where the
indirect distribution is excessive (thick, black line) and the region in which the direct
distribution is possible (dashed red line). The latter region is the one at which B
successfully reaches Bob while still entangled.

As in fig. 5.2, the excessive distribution is the best protocol when the control on
A and B is strong: the best value of p is always in the excessive region for any noise.
Now, the exact value of p at which the distribution is optimal depends on the noise
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parameter. However, it is still at the extreme of the region at which B is initially
entangled (red dashed line).

Finally, observe that a significant entanglement gain is obtained with the in-
direct protocol, even in regions where the direct ones are not effective. Indirect
distribution, then, can improve the number of cases where Alice and Bob can gain
any entanglement at all, given that they have little control on C and on the channel
that separates them. However, this advantage disappears if Alice is able to prepare
A and B in a pure state, or in a nearly pure one (high p). This, together with other
cases we studied, reinforces the idea that direct protocols using pure states are very
hard, if at all possible, to beat. However, the presence of local noise in the lab
could prevent Alice to effectively prepare a pure state, making indirect distribution
a useful resource.

5.6 Entanglement distribution with local noise

As was illustrated in the previous examples, the purity of the initial states, of both
the main parties A and B and of the carrier C, is an important factor in deciding
which method of distribution is the most effective. It is interesting to study the case
in which some local noise is present in Alice’s and Bob’s labs, apart from the one in
the channel. Our protocol is still a direct one followed by an indirect distribution
as shown in fig. 5.5, but now all the particles that are in Alice’s lab are affected
by a noisy channel. We again start from the Werner state of A and B, while C is
initially in a pure state, |x0〉. The local noise is modeled by an amplitude damping
channel, while the noise in the channel, as in the previous sections, are described by
dephasing, depolarizing, and amplitude damping channels.

By fixing p = 0.34, we obtain the plots in fig. 5.6. We see, as we would expect,
that the presence of the local noise in both labs disrupts greatly the entanglement
that is gained in the indirect process. However, the advantage of excessiveness in
this case is striking: any gain in entanglement is obtained through an excessive
distribution.

One may ask how many of these excessive protocols are with separable or entan-
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(a)

(b)

(c)

(d)

Figure 5.5: Direct distribution, followed by an indirect one, through a noisy channel, when
local noise is also present in both labs. (a) Alice correlates A and B locally. (b) B reaches
Bob through the noisy channel, and A and C interact with each other, and are also affected
by one-qubit noise. (c) Finally C is sent to Bob, while A and B are again affected by the
local noise (d) increasing the entanglement shared with Alice.

gled carriers. To answer this question, we numerically evaluated, for many values of
p, the robustness of a class each protocols as the number of noise parameters, both
in Alice’s lab and in the channel, that allow the protocol to belong to that class.
The robustness is defined as the areas of colored regions for similar plots to the
one shown in fig. 5.7. The equivalent plots for dephasing and amplitude damping
channels present very similar characteristics. However, a unique feature of the de-
polarising case is that the direct protocol can be improved, with a finally separable
carrier, even if A and B are initially maximally entangled (p = 1).

Fig. 5.8 shows the area robustness of different protocols for different values
of Werner state parameter p for depolarizing channel noise and local amplitude
damping noise in Alice’s lab. The equivalent plots for dephasing and amplitude
damping channels present very similar characteristics. However, a different feature
of the depolarising case is that the direct protocol can be improved, with a finally
separable carrier, even if A and B are initially maximally entangled as is shown in
fig. 5.8, where the dotted and dashed-dotted curves do not go to zero for p = 1.
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Figure 5.6: Negativity gain achieved in the indirect phase of the protocol described in
Fig. 5.5. The parameter for the Werner state is p = 0.34, while C is prepared in a pure
state. The local noises of Alice and Bob are modeled by amplitude damping channels and
assumed to have the same parameter, plotted in the horizontal axis. On the vertical axes
we show the strength of different noises in the channel. Within the thick line the protocol
is excessive, meaning that the communicated entanglement is smaller than the one that
is gained. The regions where the noise parameters generate an excessive protocol is very
broad. The points with largest increment, for local noise parameter about δad ∼ 0.5,
are always in the excessive region. As expected, the gain in negativity is greatly reduced
compared to the case where the local noise is not present, in Fig. 5.4.

We see that the use of indirect protocols allows distribution for some sets of
parameter for any value of p, and an increment in entanglement is observed in a
very large region (blue, dashed-dotted curve). The direct distribution is impossible
when the initial state is separable (p < 1/3), and in this case, indirect distribution
is the only viable option. Even when direct distribution is effective (p > 1/3),
the second, indirect, step makes the range of parameters in which distribution is
successful much larger. The area for which a positive increment is obtained with
a carrier that is separable in the end is smaller, but comparable, to the total area
obtained from the excessive, indirect distribution.

5.7 Conclusions

We discussed how the presence of noise affects entanglement distribution protocols
using qubits. If quantum noise is present in the communication channel, the best
direct protocols involve pure states. When indirect protocols are included, however,
the idea is that they could offer some advantages, because the partial, or even
total, loss of communicated entanglement is not as “fatal” for this class of protocols.
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Figure 5.7: Visual representation of different entanglement distribution protocols, starting
with a Werner state with parameter p = 1/2. In the vertical axes we show the depolarising
channel parameter, in the horizontal one, the local amplitude damping noise parameter.
In the green region, the simple direct protocol is effective. In the blue region, the indirect
protocol produces a negativity increment. The pink and orange region represent the cases
where the carrier is separable when it reaches Bob, and leaves Alice’s lab, respectively, as
entangled or as separable.
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Figure 5.8: Area robustness of various protocols (vertical axis) as a function of the Werner
state parameter p (horizontal axis) for local amplitude damping and a depolarizing channel
noise. The curves are obtained by integrating over the regions, as in Fig. 5.7. Although
the direct distribution is possible only for p > 1/3 (green full line), by using indirect
protocols (orange dashed line), the creation of entanglement is possible for any value of p.
Furthermore, the area on which we have an increment in entanglement after the indirect
protocol (blue dashed-dotted line) is comparable for many values of p to the total area of
entanglement distribution, and a large part of this area is with a finally separable carrier
(pink dotted line).
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However, in our study and protocol sampling, we didn’t find an example of an
indirect protocol that could outperform the optimal direct one, that is the one that
uses pure states. Indirect protocols are not effective if the communication channel is
entanglement breaking, offering no advantage in this scenario. On the other hand,
if the purity of the initial state is compromised by external conditions, such as
the presence of local noise or noise in the source, indirect protocols, particularly
excessive ones, allow to increase the entanglement or even to generate entanglement
in conditions where it would otherwise be impossible.
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6. Increasing entanglement via mea-

surements with unknown results

A global projective measurement can increase the entanglement of a bipartite state.
For example, measuring a state of two qubits on a Bell basis and then reading the
result (post-selecting) projects it onto a Bell state, that is always more entangled
than the initial state, unless this is another Bell state. However, if we do not post-
select, it becomes a different problem. We are trying to characterize the properties
of the state and the basis that allow entanglement to grow in such an operation.
This is not a distribution protocol, since it requires a global operation. However, it
could in principle be used in the preparation of the entangled state used in direct
distribution protocols, although it does not necessarily offer an advantage compared
to a global unitary gate.

We want to study the conditions that allow entanglement to grow while applying
a projective measurement on an initially pure state, without post-selecting the result.
This is still work in progress, but some interesting results, both numerical and
analytical are already available.

The states of the basis need to be entangled, at least as entangled as the initial
state. However, the entanglement of the basis is not the only condition for increasing
the final entanglement. We show this in two ways:

• the measurement on a Bell basis, without post-selection, cannot increase the
entanglement of any state;

• if some of the states in the basis are separable, the final entanglement can be
larger than the case where all the states are entangled.
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6.1 Convex measures

We start from a pure state of a bipartite system AB, |φi〉. The dimension of the
Hilbert space is D = dA × dB. This state has some entanglement, in a given mea-
sure E, given by E(|φi〉〈φi|) = Ei. Next we measure an observable M given by
M =

∑D
k=1 λk |ψk〉〈ψk|. Each of the states in the basis {|ψk〉} has entanglement

E(|ψk〉〈ψk|) = Ek, and for convenience, we assume Ek ≥ Ek+1. If we do not post-
select, the state after the measurement will be

ρf =
D∑
k=1

pk |ψk〉〈ψk| , (6.1.1)

where pk = | 〈φi|ψk〉 |2. We ask if ∆ = Ef − Ei = E(ρf )− E(|φi〉〈φi|) > 0. For any
convex entanglement measure, and any dimensions of A and B, the entanglement
of the most entangled state of the basis |ψ1〉 bounds the final entanglement:

E(ρf ) = E
( D∑
k=1

pk |ψk〉〈ψk|
)
≤

D∑
k=1

pkE
(
|ψk〉〈ψk|

)
≤

D∑
k=1

pkE
(
|ψ1〉〈ψ1|

)
= E

(
|ψ1〉〈ψ1|

)
.

(6.1.2)
We conclude that, if the measure of our interest is convex, a positive increment is
only possible if at least one of the vectors of the basis is more entangled than the
initial state. This result is very reasonable, entanglement is not created ‘for free’.

6.2 Two-qubit states

6.2.1 Measurement on a Bell basis

We prove that, for any pure state of two qubits, a measurement on a Bell basis can
never increase the entanglement, measured by the negativity. A general pure state
can be decomposed on the Bell basis as

|φi〉 = A |φ+〉+B |φ−〉+ C |ψ+〉+D |ψ−〉 . (6.2.1)
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Without losing generality, we assume that |A|2 ≥ |B|2 ≥ |C|2 ≥ |D|2. The state
after the measurement is a Bell diagonal state

ρ = |A|2 |φ+〉〈φ+|+ |B|2 |φ−〉〈φ−|+ |C|2 |ψ+〉〈ψ+|+ |D|2 |ψ−〉〈ψ−| . (6.2.2)

As shown in sec. 1.3.2, the final negativity is Nf = |A|2 − 1
2
. The negativity after

partial transposition of the state |φi〉〈φi| can be evaluated as

Ni =
1

2

∣∣A2 −B2 − C2 +D2
∣∣ (6.2.3)

For any two complex numbers x and y, it holds |x − y| ≥ |x| − |y|, as can be
shown by applying the triangular inequality to |x| = |x − y + y|. Consequently
|x + y| = |x− (−y)| ≥ |x| − |y|. By using both these inequalities in eq. (6.2.3), we
obtain

Ni =
1

2

∣∣A2 −B2 − C2 +D2
∣∣ ≥ 1

2

(
|A2 +D2| − |B|2 − |C|2

)
≥ 1

2

(
|A|2 − |D|2 − |B|2 − |C|2

)
= |A|2 − 1

2
= Nf ,

(6.2.4)

which shows that the negativity can only decrease in this process, i.e Nf ≤ Ni.

6.2.2 Measurements on constant bases

The initial state of two qubits, in its Schmidt basis reads

|φi〉 = a |00〉+ b |11〉 , (6.2.5)

with a2 + b2 = 1, and a and b being two real positive numbers between 0 and 1. The
negativity of this state is given by ab = a

√
1− a2. We choose to take a measurement

on a basis that has the property that all the states have the same Schmidt basis.
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The states of such a basis can be uniquely written as

|ψ1〉 = c |00〉+ d |11〉 ;

|ψ2〉 = d |00〉 − c |11〉 ;

|ψ3〉 = f |01〉+
√

1− f 2 |10〉 ;

|ψ4〉 =
√

1− f 2 |01〉 − f |10〉 ,

(6.2.6)

where d =
√

1− c2. The negativity of the first two states of the basis is Nb = cd =

c
√

1− c2. Without losing any generality, we can assume that a2 ≤ 1/2, c2 ≤ 1/2.
We call this a ‘constant basis’, as the Schmidt basis is constant in all the basis.

We now the state in eq. (6.2.5) on this basis, obtaining the rank-2 final state
ρf = p1 |ψ1〉〈ψ1| + p2 |ψ2〉〈ψ2| that, whose partial transpose, in the Schmidt basis,
reads

ρTAf =



d2(bc− ad)2 0 0 0

+c2(ac+ bd)2

0 0 cd((ac+ bd)2 0

−(bc− ad)2)

0 cd((ac+ bd)2 0 0

−(bc− ad)2)

0 0 0 c2(bc− ad)2

+d2(ac+ bd)2


, (6.2.7)

The only negative eigenvalue of the partial transpose of this matrix gives rise to the
negativity

Nf = ±cd
(
(ac+ bd)2 − (bc− ad)2

)
= cd

(
(a2 − b2)(c2 − d2) + 4abcd

)
. (6.2.8)

By inverting the equations N2
i = a2(1−a2) and N2

b = c2(1− c2), this expression can
be rewritten as a function of the negativities of the initial state and of the basis as

Nf = Nb

(
±
√

1− 4N2
i

√
1− 4N2

b + 4NiNb

)
. (6.2.9)
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Figure 6.1: Negativity increment as function of the negativity of the basis, for two different
values of Ni. The pink lines represent the upper bound, shown in the eq. (6.1.2) to be
Nb −Ni.

The ± denotes the sign of the product (c2 − 1/2)(a2 − 1/2). Per our assumption a2

and c2 are both smaller than 1/2, therefore we have the plus sign. Notice that, in
the other case, where the minus sign is obtained, the final negativity would turn out
to be smaller. If Nb = 0 (i.e. the first two states of the basis are separable), we find
that Nf = 0, for any initial negativity Ni. This has to be true, since in this case
the final state in eq. (6.1.1) is already written in a separable form. If Nb = 0.5 (i.e.
we measure over a Bell basis), on the other hand, we get Nf = Ni, as predicted by
eq. (6.2.4). In both limits, then, the negativity does not grow in the process. We
see, from plots similar to fig. 6.1, that these curves always have a maximum, unless
the initial state is maximally entangled. By solving for Nb the equation ∂Nf

∂Nb
= 0,

we find that the negativity of the basis corresponding to a maximum increment is

Nmax
b =

√
2Ni + 1

2
√

2
. (6.2.10)

By imposing the condition Nf ≥ Ni, we find that we can obtain a positive increment
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for measurement and states that satisfy

Ni < Nb < 0.5, (6.2.11)

as is fig. 6.1 shows. Finally, by putting the value of the negativity of the optimal
basis, eq. (6.2.10), into eq. (6.2.9), we find that the maximum increment that a
measurement on such a basis allow decreases linearly with the initial negativity as

Nmax
f −Ni =

1

4
− Ni

2
. (6.2.12)

This shows that initially separable states can have the largest negativity gain (Nf =

0.25), when measured in a basis with negativity 1
2
√

2
, according to eq. (6.2.10). It

also shows that any initial state has a strictly positive negativity gain in this process,
unless it is maximally entangled.

6.2.3 Variation with local unitaries

So far in this section we assumed that the initial state had the same Schmidt basis as
all the states in the basis. We can consider a more general case where we apply local
unitaries UA and UB to the initial state, and measure on the basis in eq. (6.2.6).
The final entanglement, in this case, is the same as if we applied the local unitary
operation U †A ⊗ U

†
B to all the states of the basis.

We assume that UB = U †B = I and define the Schmidt basis of the initial state
as ∣∣0̃〉 = UA |0〉 =

√
λ |0〉+ eiφ

√
1− λ |1〉 ;∣∣1̃〉 = UA |1〉 =

√
1− λ |0〉 − eiφ

√
λ |1〉 .

(6.2.13)

In this way, the initial state is

|φi〉 = a
∣∣0̃0
〉

+ b
∣∣1̃1
〉
, (6.2.14)

while the basis is still the one in Eq. (6.2.6). We assume, without losing generality,
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that 0 ≤ λ ≤ 0.5.
When the Schmidt basis of the initial state and of the state of the basis were the

same (λ = 0), the second two states of the basis |ψ3〉 and |ψ4〉 did not contribute to
the final state. However, now they do contribute and the value of f affects the final
entanglement.

First case: f = c <
√

0.5

To start, assume that f = c, i.e. all the states of the basis have the same en-
tanglement. All the dependence on λ of the negative eigenvalue after the par-
tial transposition is contained in an additive term λ/2 and a multiplicative term
(c4(8λ− 4) + c2(4− 8λ) + λ2). By comparing the expression of the final negativity
with the one that is obtained for λ = 0, we can rewrite it as

Nf (λ) = −λ
2

+Nf (λ = 0)

√
1− 2λ+

λ2

4N2
b

. (6.2.15)

Nf (λ = 0) is given in eq. (6.2.9).
The derivative of eq. (6.2.15) with respect to λ is

∂Nf

∂λ
= −

Nf (λ = 0)
(

λ
2N2

b
+ 1
)

2
√
−λ− λ2

4N2
b

+ 1
− 1

2
≤ 0. (6.2.16)

This value is always negative, showing that the final negativity is a decreasing func-
tion of λ. These results are only valid for 0 ≤ λ ≤ 0.5, but are symmetric for
0.5 ≤ λ ≤ 1. We conclude that the final negativity, for a given value of Nb and Ni,
is maximal when λ = 0, 1, i.e. when the Schmidt basis of the initial state and the
measurement basis are parallel.

Second case: f 6= c <
√

0.5

As long as c2 ≤ 0.5, the condition f < c implies that the entanglement of the first
two states of the basis is larger than the one of the other two states. In this case,
we take as the ‘entanglement of the basis’ the negativity of the two most entangled
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Figure 6.2: Negativity increment as a function of the negativity of the basis, for Ni = 0.14
and λ = 0.2. We see that the cases where f < c give a larger negativity gain than f = c,
although f = 0 is not optimal.
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states, Nb = c
√

1− c2. The case f > c is equivalent, but with a complementary
value of λ′ = 1− λ.

We plot the negativity increment as a function of Nb for many values of f . We
see that, if the states of the basis are maximally entangled, the final entanglement
decays. Quite surprisingly, we see also that the optimal value of f is not f = c

(maximum allowed negativity of all the states), but f ≈ c/10. This means that
a basis with little entanglement in some states is more ‘effective’ than one with
more entanglement. On the other hand, the case where the two states with less
entanglement in the basis are fully separable is still not the optimal one, although
better than f = c. We also notice that the negativity increment starts to be positive
way after the value of Nb = Ni.

6.3 General measurements

We consider a general basis, in the Schmidt basis of the most entangled state.

|ψ1〉 = c |00〉+ d |11〉 ;

|ψ2〉 = A2

(
d |00〉 − c |11〉

)
+B2 |01〉+ C2 |10〉 ;

|ψ3〉 = A3

(
d |00〉 − c |11〉

)
+B3 |01〉+ C3 |10〉 ;

|ψ4〉 = A4

(
d |00〉 − c |11〉

)
+B4 |01〉+ C4 |10〉 ,

(6.3.1)

where the complex coefficients Ai, Bi and Ci must satisfy the normalization and
orthogonality conditions 〈ψi|ψj〉 = δij. We order the states of the basis decreas-
ingly with their entanglement E

(
|ψ1〉〈ψ1|

)
≥ E

(
|ψ2〉〈ψ2|

)
≥ E

(
|ψ3〉〈ψ3|

)
≥

E
(
|ψ4〉〈ψ4|

)
, unless otherwise specified, and as we did before, we assume that

c2 ≤ 1/2.
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6.3.1 Measuring a separable state

We prove that, by measuring the initially separable state |φs〉 = |11〉, the final
density matrix is always entangled. The state after the measurement is given by

ρf =
4∑

k=1

| 〈ψk|φs〉|2 |ψk〉〈ψk| = d2 |ψ1〉〈ψ1|+ c2

4∑
i=2

|Ai|2 |ψi〉〈ψi| = d2 |ψ1〉〈ψ1|+ c2ρ2,

(6.3.2)
where ρ2 =

∑4
i=2 |Ai|2 |ψi〉〈ψi| is a density matrix, satisfying the normalization con-

dition Tr(ρ2) = 1. We can apply any local unitary operations on this state, without
altering the entanglement. We choose to apply the unitary operation UA = iσY on
qubit A. We obtain the matrix

ρ′ = UAρfU
†
A = d2 |ψ′1〉〈ψ′1|+ c2ρ′2, (6.3.3)

where |ψ′1〉 = c |10〉 − d |01〉 and ρ′2 = UAρ2U
†
A is another density matrix.

In order to show that this state is entangled, we apply to it the swap operator

Σ =
1∑

i,j=0

|i〉 〈j|A ⊗ |j〉 〈i|B. (6.3.4)

This operator, as was discussed in sec. 1.2, is an entanglement witness, meaning
that if

Tr(Σσ) < 0, (6.3.5)

this means that the density matrix σ is entangled. We apply this criterion to the
state in eq. (6.3.3). The action of the swap operator on a pure state is of inverting
the states of A and B is

Σρ′ = d2
(
c |01〉 − d |10〉

)(
c 〈10| − d 〈01|

)
+ c2Sρ2. (6.3.6)

For any positive matrix M , the swap operator Σ satisfies Tr(MS) ≤ Tr(M), as can
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Figure 6.3: Upper bound to the average value of the swap operator Σ over the state ρ′,
F ≡ 1− d2

(
2
√

1− d2d+ 1
)
, as a function of d2. The plot shows that Tr(Sρ′) < 0 for any

value of 0.5 < d2 < 1. This proves that the state is entangled.

be verified by taking the trace on the eigenbasis of M . Then

Tr(Σρ′) = −d2(2cd) + c2Tr(Sρ2) ≤ −d2(2cd) + c2 < 0. (6.3.7)

The second inequality holds, as shown in fig. 6.3, as long as 0.5 < d2 < 1. This
proves that the state ρ′, and consequently also the state ρf is entangled in this range.
In the extreme values, the state |ψ1〉 is either a Bell state (d2 = 0.5) or a separable
state (d = 1). Notice that we didn’t use the assumption that the state |ψ1〉 is the
most entangled. Hence, this also proves that, for any measurement basis that has
at least an entangled state that is not maximally entangled, there is at least a state
that gains entanglement when measured over the basis.

6.4 Random basis sampling

We sampled 10 000 orthonormal bases of two qubits. We label as the entanglement
of the basis Nb the negativity of the most entangled state, |ψ1〉. The remaining
states of the basis have in general different negativities and Schmidt bases, as in eq.
(6.3.1). We perform a measurement on two initial states, with the same Schmidt
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basis as |ψ1〉, built as follows:

|φs〉 = |11〉 ;

|φi〉 = a |00〉+
√

1− a2 |11〉 .
(6.4.1)

where a is derived by inverting eq. (6.2.10) as

a =

√
2
√
−4c8 + 8c6 − 5c4 + c2 +

1

2
, (6.4.2)

In other words, the second state in eq. (6.4.1) is the one on which the basis would
give raise to the maximum final negativity if the basis were of the form (6.2.6)
(constant basis).

We now plot the negativity increment as a function of Nb, in figs. 6.4 and 6.5.
We see in fig. 6.4 that all separable states |φs〉 gain entanglement in this process, as
we proved. Furthermore, their final entanglement can be larger for some bases that
are not in the form (6.2.6), that reinforces the considerations made in the previous
section: if the basis is non-optimal, less entangled states could be better for the
negativity gain than more entangled ones.

In fig. 6.5, however, we see that the optimal constant basis with negativity given
in eq. (6.2.10) allows the largest gain among all the bases with the same Nb that
were sampled. This is reinforced by fig. 6.6, where it is seen that all the random
bases on which the initial state was measured produce a smaller negativity gain than
the bound in eq. (6.2.12) reached for a constant basis.

6.5 Conclusions

It is possible to increase the entanglement of a state by applying a projective mea-
surement without post-selecting the result. Although the states of the basis need to
be entangled for this process to be effective, the final entanglement does not grow
with the entanglement of the basis. Particularly for two qubits, neither a separable
nor a maximally entangled state can increase the negativity of a pure state.

For two qubits, we showed a derivation of the gain in negativity produced by
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Figure 6.4: Negativity increment as a function of the negativity of the most entangled
state of the basis that was randomly extracted (blue dots). The initial state is |φs〉 = |11〉,
where both the local states belong to the Schmidt basis of the most entangled state in
the measurement of the basis. In this case, some of the random non constant basis (blue
dots) are better than the constant basis expressed in eq. 6.2.6 (green line), at least for
high Nb. However, all the sampled bases succeed in increasing the entanglement after the
measurement.

a ‘constant basis’, where all the states have the same Schmidt basis. Any non-
maximally entangled state, with the same Schmidt basis, has an increment in neg-
ativity after the measurement. The maximum allowed gain is obtained for initially
separable states, and decreases linearly with the initial negativity. We discussed
how local unitary operations can affect the final negativity. We showed that a basis
where two states have the same Schmidt basis as the initial state seems to be the
best, among these sub-optimal measurements.

We proved that a separable state always gains entanglement with measurements
on a basis that has one entangled state (that is not a Bell state) with a parallel
Schmidt basis.

We also performed a random numerical sampling of the measurement basis. This,
together with reinforcing the conclusions drawn in the previous sections, revealed,
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Figure 6.5: Negativity increment as a function of the negativity of the most entangled
state of the randomly extracted basis. The initial state |φi〉 is entangled and given in eq.
(6.4.1). In this case, all the random non-constant-entanglement bases (blue dots) provide
a lower gain than the constant basis expressed in eq. (6.2.6) (green line).

for a given state, the basis that allows the largest entanglement gain is a constant
basis.

A full characterization of the properties of the measurement and of the initial
state, allowing to produce entanglement gain is the goal of this work. However, this
study is still work in progress. In the near future, it would be desirable to prove
analytically the statements that the numerics suggested, and then to extend at least
some of these considerations to bipartite states of higher dimensions.
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7. Outline and open problems

We studied some properties of entanglement distribution protocols, particularly in
the distinction between direct and indirect distribution.

In chapter 3, we described the realization of a protocol for entanglement distri-
bution that uses a separable carrier.

In chapter 4, we introduced a classification of distribution protocols, and showed
some properties and examples of the various classes.

In chapter 5, we explored the advantages of some protocols over others, in the
presence of noise, and depending on the external conditions. Direct protocols are
the simplest class of entanglement distribution, and possibly they cannot be outper-
formed by indirect ones, if there is perfect control over the state, particularly if any
pure state can be implemented. However, if pure states are not feasible, in some
conditions indirect protocols, especially excessive ones, offer an advantage and even
make the distribution possible.
Although almost pure states were created under laboratory conditions, they could
be sometimes difficult to control, and part of the purity is easily lost in time. My
impression is that indirect protocols, that are robust to mixedness in the state
preparation and to the noise in the channel, could offer a cheap but less effective
alternative to direct distribution with pure states.

In chapter 6, we described a class of global operations that can increase bipar-
tite entanglement, using a projective measurement on a given basis without post-
selection. We explored, both analytically and numerically, what are some properties
of such basis that allow the entanglement of two qubits to grow in this process.
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7.1 Open problems

The work presented in this thesis is largely confined to protocols where qubits inter-
act for a finite fraction of time, ideally instantaneously, and is quite far from being
general.

7.1.1 Distribution in the presence of noise

A “complete picture” of entanglement distribution protocols, complementing the
results that were mentioned in sec. 2.3.3, is a desirable goal. Particularly, a definitive
proof of the optimality of direct protocols is missing. A larger description of the
robustness to different noisy channels and a generalization of the results to higher
dimensions, finite as well as continuous, is another unachieved goal of this research.

7.1.2 Distribution with continuos interactions

Distribution protocols using continuos interactions are quite unexplored. A work
on this scenario has recently been submitted [107]. These protocols present some
characteristics that are quite different from the discreet protocols described in this
thesis. A study on the limits and advantages that they offer, in the presence of noise
or without it, and a comparison to the results that are already known for discreet
interaction would be very interesting. A way of distributing entanglement that is
somewhat unexplored is the one where A and B are interacting, for a continuos
time interval, not with each other, but with a common mediator C. The interaction
Hamiltonian describing the dynamics of such system would have the form

H = HAC +HBC . (7.1.1)

In Cubitt et al.’s paper [73], it was already shown that these protocols can work
even with a separable mediator. However, other questions arise, such as if discord is
still a bound to distributed entanglement, or at least a necessary resource for such
distribution scheme to work.
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We are still investigating the answer to this question, and it’s not very trivial.
According to the Trotter expansion, the evolution of the state can be written

ρABC(t) = lim
n→∞

(e−iHACt/ne−iHBCt/n)nρABC(0)(eiHACt/neiHBCt/n)n (7.1.2)

that reveals repeated discrete distribution protocols where C interacts in turn with
A and B, making them entangled. Applying the discord bound (2.3.10) to the state,
we find that for short times δt

EA:BC(δt)− EA:BC(0) ≤ D′AB|C(δt) +DAB|C(0), (7.1.3)

where D′AB|C(δt) is the discord of the “virtual” state ρ′ABC(δt) =

e−iHACδtρABC(0)eiHACδt.

As a purely quantitative restriction, the above bound is rather trivial, because
the left hand side is an infinitesimal quantity, bound from above by a finite number.
However, it shows that, even though the discord is zero, DC|AB = 0, in a short time
interval an increment in entanglement could still be possible, due to the “virtual”
discord D′AB|C(δt). However, we showed that a constantly classically correlated
mediator cannot increase the entanglement in the system. This property can be
used to detect the classicality of the environment by only locally observing the
system, similarly to what was proposed in [108,109].

Other questions that are still open are on how the noise affects such processes
and, in general, what are the properties of the Hamiltonian and the initial states
that allow entanglement to grow.

7.2 Other projects

7.2.1 Multipartite entanglement without multipartite corre-

lations

Another project in which I take part is a follow-up on the work [110]. In this paper,
it is shown that there exist states which contain genuinely N-partite entanglement,
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but still have a zero N-partite correlation tensor. Furthermore, even though the
tensor is identically zero, these states can still violate some Bell inequalities. The
systematic construction given in [110] only works if N is an odd number, leaving
the question open for an even number of parties. We proved that this class of
states (entangled without correlations) does not exist for N = 2 qubits, but does for
N = 4, 6. However, our numerics shows that these states need to have rank 3 and
above.
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Quantum measurements

We now review the formalism of measurements on a quantum system, to which we
referred several times in this thesis:

Projective measurements

Suppose that we have a system in a pure state |ψ〉, and we want to measure an
observable M . This observable is diagonal in the basis |m〉, and has eigenvalues,
corresponding to all the possible measurement outcomes, m:

M =
∑
m

m |m〉〈m| =
∑
m

mΠm, (.1)

where we have renamed the projectors on the state |m〉, Πm. The vectors |m〉 form
a basis on the Hilbert space, therefore the projectors must satisfy

Tr(ΠmΠn) = δmnΠm∑
m

Πm = I (.2)

The probability of measuring the value m is given by

p(m) = | 〈ψ|m〉 |2 = 〈ψ|Πm |ψ〉 = Tr(Πm |ψ〉〈ψ|). (.3)

The state after the m eigenvalue is measured is

|ψm〉 = |m〉 =
Πm |ψ〉√
p(m)

. (.4)
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The average outcome of the measurement is given by

〈M〉 =
∑
m

mp(m) = 〈ψ|M |ψ〉 = Tr(M |ψ〉〈ψ|). (.5)

Now, if the initial state is mixed

ρ =
∑
j

pj |j〉〈j| , (.6)

all the above quantities have to be evaluated on the pure states |j〉, and then averaged
according to the probabilities pj. For instance, the probability of measuring the
outcome m is

p(m) =
∑
j

pjTr(Πm |j〉〈j|) = Tr(
∑
j

pjΠm |j〉〈j|) = Tr(ρΠm), (.7)

where we used the linearity of the trace.

The state after the measurement is still pure:

ρm = |m〉〈m| = Πm =
Tr(ρΠm)

p(m)
. (.8)

and the average measured value is

〈M〉 = Tr(Mρ). (.9)

If we do not post-select, meaning that we do not look at the result of the measure-
ment, the state in the end is a mixture of the possible states ρm with weights given
by

ρ =
∑
m

p(m)ρm =
∑
m

Tr(ρΠm) |m〉〈m| . (.10)
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POVM

Positive-operator valued measure (POVM) is a generalization of the projective mea-
surements. We use the treatment of Peres [111]. Suppose that the system is bi-
partite, and in the state ρAB = ρA ⊗ ρB. We measure an observable on the Hilbert
space of A and B:

MAB =
∑
m

m |m〉〈m| =
∑
m

mΠm, (.11)

The probability to find the outcome m in a measurement is

p(m) = Tr(ρABΠm) =
∑

(i,k)A,(j,l)B

〈ij|Πm |kl〉 〈k| ρA |i〉 〈l| ρB |j〉 =
∑
i

〈i|AmρA |i〉 = Tr(ρAAm),

(.12)
where we defined the operators,

Am =
∑
j

〈j|ΠmρB |j〉 . (.13)

The state of A after the value m was observed is

ρm =
Tr(ρAAm)

p(m)
. (.14)

The hermitian operators Am, that act on the Hilbert space of A, are elements of a
POVM. They are positive, as can be shown from Tr(ρABΠm) ≥ 0, for any m and
ρAB. Also, they satisfy ∑

m

Am = IA. (.15)

Reduction criterion of separability and limits for a class of distillation protocols
In this sense, they generalize the set of operators Πm for a projective measurement.
However, they do not necessarily commute, nor are they orthogonal with each other.
They are an over-complete set, in the sense that, in general, their number is higher
than the dimension of A.
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Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis
sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec
ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a
dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel,
semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut
metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet
ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus,
aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum.
Nunc quis urna dictum turpis accumsan semper. [?]
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