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Abstract

We present an intuitive geometrical approach to entanglement detection. It allows one to
formulate simple and experimentally feasible sufficient conditions for entanglement. Within
the approach we derive the necessary and sufficient condition for separability and discuss

its relation with entanglement witnesses and positive maps.

PACS number: 03.65.Ud

1. Introduction

Entanglement is one of the most fundamental features of
quantum physics and it is recognized as the key resource
in quantum information processing [1]. Thus, its detection
attracts much research interest [2]. In this respect, the
experiment yields best to the methods based on entanglement
witnesses [3]° derived from positive, but not completely
positive, maps [4].

We present an alternative, purely geometrical approach
to entanglement identification. It leads to a sufficient
criterion for entanglement expressed in terms of simple
conditions on the correlation functions®, easily tested by local
measurements. A generalization of the simple criterion gives
a necessary and sufficient test for entanglement applicable
to composite systems of arbitrary dimensions. There it
allows for analysis of the so-called k-separability [6] and,
consequently, a complete separability analysis of distributed
states. A somewhat more extended version of our results was
published in [7].

2. Simple criteria for many qubits
Consider a system composed of many spin-% particles
(qubits). A useful representation of an arbitrary state of many

5 For the PPT criterion, see Peres [3].
6 A set of different sufficient criteria based on correlation functions can be
found in e.g. [5].
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qubits is given by the correlation tensor

>

Mo iy =0

o (1)

P = T,U,].../J.NG;L] ®"’®O'U,N,

where o0, €{l, 0., 0y,0;} is the p,th local Pauli operator
of the nth party and 7}, ,,, = Tr[p(0y,, ® ---®0,,)] are the
components of the generalized correlation tensor T. They
are accessible to standard experiments performed for e.g.
quantum state estimation (tomography). We phrase our simple
criteria in terms of the correlation tensor.

A state p is separable (not entangled) if it can be put as a
convex combination of product states, i.e.

1
Psep = Z pip,‘( )
i

with p; >=0 for all i, and ), p; =1. In the language

of the correlation tensors this decomposition reads 7 =

Y. pi T where TP =TV @ - .. @ T™ and each 7%
describes a one-qubit state. The correlation tensors form a real
vector space with a usual scalar product

®"'®,0,‘(N)7 (2)

(5(’ f/) = Z D STIRNTIND SR (3)
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For our purpose, we allow generalized products by permitting
the summation to run over selected subsets of the whole range
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of the indices u, =0, 1,2, 3, e.g. u, = 1,2 (in which cases
we shall call the indices j,,). The separable correlation tensors
form a convex set in this space. Consequently, when T is the
tensor of p, one has the implication

p is separable = Elfpmd(f, 7Y > (T, T), 4
or, equivalently:

max(7T, TP < (T, T) = p is entangled. 3)

T prod

To see that (4) is true, assume that (f, fp“’d) is strictly smaller
than (T, T) for all product states and Tis separable. Then we
have (T, T) = > p,-(f", Torody, By assumption it is strictly
smaller than ) ; p,-(f, f") = (f", f"), which is a contradiction.
Implication (5) leads to a simple and useful criterion
when the summation in the scalar product is restricted to the
indices j, with values j, = 1,2 or j, = 1,2, 3. In this case,
the maximization on the left-hand side of (5) is given by the
highest Schmidt coefficient, 7™, of tensor T [8]. Therefore,
the quantity .
TP

- 7T max ’

€ (6)
where ||f||2= (f, f"), is a simple entanglement witness.
If £ > 1 there exists at least bipartite entanglement in the
N-qubit state. Moreover, since 7™ < 1 then the state is
entangled if || T [>> 1. To establish the latter may sometimes
require a very limited number of measurements. For example,
in the case of the Greenberger—Horne—Zeilinger (GHZ)
state [9], measurement of fwo correlations is sufficient to
detect entanglement (for indices x or y, this state has 2V~!
components of the correlation tensor equal to £1). Likewise,
two measurements suffice to detect entanglement in any of the
graph states [10].

Moreover, condition (6) is quite universal. It can show
entanglement of all Bell states (£ = 3) in the same setup even
if there is no single linear witness, which detects entanglement
of all these states.

Finally, our method is applicable to composite systems
of arbitrary dimensions (higher than qubits). For that in
our formulae, one needs to replace Pauli operators by their
Gell-Mann-type generalizations.

3. Generalized scalar product

Despite its advantages, condition (6) has some shortcomings.
When applied to detect entanglement in mixtures of a GHZ
state with the white noise:

1
p(p) = pIGHZy}(GHZy |+ (1 = p) 5 1. (N

it detects all the entanglement detectable by the PPT criterion
(cf [11]) in states of even numbers of qubits. For an odd
number of qubits, however, condition (6) with the sums
over j, =1, 2,3 gives a weaker entanglement criterion than
PPT [7]. Moreover, inclusion of additional correlations in the
scalar product could not cure the weakness.

The last example indicates that for success, one may
need a proper combination of the available correlations.

To identify it, one may consider generalized scalar products,
defined via a positive semi-definite metric G:

X[L]...;LN Gul...y,N,v]...uN le...vN . (8)

H1seess KNV oo N

If one can find a metric for which

max(T, TP < (T, T)c )

7prod

then the state p described by its (extended) correlation tensor
T is entangled.

To illustrate criterion (9), let us return to the odd
particle generalized Werner states. Consider a diagonal
metric Gy, uyvion = GupooiinOpyoy vr..vy  Which couples
all the z-correlations: G0.0=":-= Gy 0z = G:0.-0
=-..= 1/(21\”1 —1)=w. The Ileft-hand side of
condition (9) equals p(Q¥~!'—1)w=p. The optimal
choice of local tensors is ]A"jf‘") =(1,0,0,1) for all
n=1,...,N. The right-hand side of (9) is given by
PN+ 28 — Dw) = p>(2N~! +1). Thus, the condition
reveals entanglement of the generalized Werner states for
p > 1/(2V~1+1), exactly as given by the PPT criterion.

4. Condition for density operators

All the steps in the proof of condition (9) can be done without
any reference to a specific representation of the state. As
a generalized scalar product in the operator space one just
has to take a weighted trace with the positive semi-definite
superoperator G, i.e. (p1, p2)c = Tr(p1Gp,). The sufficient
condition for entanglement now reads: if there is a positive
superoperator G, such that

max Tr(pGpproa) < Tr(pGp), (10)

Pprod

where we maximize over all pure product states pprod, then
state p is entangled.

Condition (10) was used to identify bound entanglement,
which is especially difficult to detect [7].

5. Necessary and sufficient conditions and relation
to entanglement witnesses

In [7], we showed that to every entanglement witness W
there corresponds a superoperator G (W), which identifies
entanglement in all the states where W does. In the
Hilbert—Schmidt space of operators, the superoperator G (W)
is a one-dimensional projector on a (super) vector yp = wl —
W, where w =max, cs(W, psep). A simple proof of this
statement may go as follows. Notice that Tr(pG(W)p') =
Tr(pyo)Tr(ypp’) and that for a state p with entanglement
identifiable by W one has Tr(pyp) > w > 0. Thus, if

an

for all separable pgp, then condition (10) with G = G(W)
identifies entanglement of p. When W identifies entanglement
of p then Tr(yp0) > w and Tr(yo0sep) < w, i.€. condition (11)
is satisfied and, consequently, G(W) identifies entanglement
of p too. One should stress, however, that many entanglement

Tr(y00) > Tr(yo0sep)
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identifiers G do not have their witness counterparts. In parti-
cular, when G is not a one-dimensional projector, there
is no entanglement witness corresponding to it. We found
these superoperators particularly interesting entanglement
identifiers.

6. Conclusions

We have derived handy sufficient conditions for the
entanglement of distributed quantum states. It works in
the Hilbert spaces of arbitrary dimension and can be
applied for arbitrarily selected subsystems (k-separability
problem). Their generalization gives a necessary and
sufficient separability criterion. The set of entanglement
identifiers defined by our criterion is strictly richer than the
set of entanglement witnesses.
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