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Abstract

Quantum mechanics successfully explains (and makes further predictions
about) phenomena classical mechanics could not accommodate within its
framework. Bell’s inequality provides a means of experimentally disqualify-
ing the local hidden variables theory that generalises the realm of classical
mechanics. However, it is derived for measurements that are spacelike sepa-
rated events on multiple particles.

The objective of this project is to obtain a similar distinction but when
measurements are carried out on a single particle at different instances in
time. The temporal scenario is shown to be fundamentally different from the
spatial scenario.

Thereafter, specific problems are investigated:

• It is shown that certain correlations that give rise to extreme violation
of Bells inequalities to some degree can be explained classically in time.

• A method is proposed to obtain temporal Bell-like inequalities via spa-
tial Bells inequalities with auxiliary communication.

• A problem is presented which cannot be perfectly solved by classical
operations, yet it can be perfectly solved by classical measurements or
a quantum protocol.

This work provides insight into the nature of measurement processes in time
especially in terms of similarities and differences with processes in space.
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Chapter 1

Introduction

1.1 State

Definition. A state is the ordered set of variables belonging to a space, V ,
that uniquely defines a system.

Information Content

Definition. Information is possessed by a state by virtue of it having one
out multiple possible values.

The amount of information contained can be quantified in terms of number
of bits, l = dlog2 |V |e, required to represent the state.

Operation

Definition. An operation, U : V → V , on a system is one that alters the
state.

1.2 Measurement

Definition. A measurement is the act of obtaining information from a
system by investigating its state.

Definition. A measurement setting is what parametrises the input of the
measuring apparatus.
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The measurement setting will be represented by s and the outcome by r. A
set of settings and outcomes will then be represented as s and r respectively.

Probability

Given s, every r will have an associated probability that we represent most
generally as p(r|s;λ;µ) where λ is the value of the variable state and µ is the
value of a generalised variable that is available to the measuring apparatus
that may affect the outcome.

1.3 Classical Mechanics

Classical Mechanics was the prevalent theory of mechanics till the turn of
the nineteenth century. Some features of classical mechanics are as follows:

• The state λ may only be altered under an operation.

•
p ∈ {0, 1} (1.1)

In other words, the outcome of a measurement is in-principle determin-
istic, given, of course, that we have information about all the parame-
ters that may affect the outcome.

• A state in classical mechanics may thus be represented by its value.

1.4 Quantum Mechanics

Quantum Mechanics emerged as a theory to make up for the shortcomings
of Classical Mechanics in being unable to explain observations such as the
discrete spectra of atoms. Some features of quantum mechanics are as follows:

• States in quantum mechanics, represented as |ψ〉 ∈ Cn, lie in Hilbert
space where n, which may be infinite, will be identified later, such that
〈ψ|ψ〉 = 1, where 〈ψ| = |ψ〉†.

• Since the state lies in a continuous space, the system possesses an
infinite amount of information.
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• Since the state is normalised to have a unit length, U † = U−1 or U
must be unitary.

• Measurements are represented by operators. At the time of measure-
ment, the state collapses instantaneously to an eigenvector of the cor-
responding operator. The outcome of such a measurement is the eigen-
value corresponding to the eigenvector.

• Since |ψ〉 ∈ Cn, there are only n distinct eigenvectors it can collapse
to resulting in at most n distinct corresponding outcomes inspite of
possessing an infinite amount of information.

l = dlog2 ne. (1.2)

• Since the state is changed at the time of measurement, measurements
are invasive.

•
p(r|s) =

∑
i

|〈φi|ψ〉|2 ∈ [0, 1], (1.3)

where H|φi〉 = r|φi〉. In other words, the outcome of a measurement is
indeterministic.

1.5 Qubit

Classical states can be represented using classical bits as variables. If quan-
tum bits were attempted to be represented by classical bits, infinitely many
bits would be required to do so. Therefore, it is useful to define a unit of
quantum information instead, analogous to a classical bit.

Definition. A qubit is a unit of quantum information |ψ〉 ∈ C2.

As expected, for a qubit, l = 1.

Physical Realisation

Qubits do not only serve as mathematical representations. They can be
realised physically and incorporated into applications. For the purposes of
this discussion, features and properties of qubits will be described keeping
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electron spin in mind due to historical reasons. However, there are other re-
alisations such as photon polarisation state that have features and properties
and display effects isomorphic to electron spin (with regard to qualifying as
a qubit) which may even be more feasible to work with experimentally.

Experimental observations in accordance with Quantum Mechanics predict
that spin 1/2 is an intrinsic property of particles such as electrons. Therefore,
irrespective of what direction is chosen to measure electron spin, it will take
one of two (±1/2~) values qualifying it as a qubit.

Pauli Matrices

Pauli matrices are as follows:

σx =

(
0 1
1 0

)
, (1.4)

σy =

(
0 −ι
ι 0

)
, (1.5)

σz =

(
1 0
0 −1

)
. (1.6)

The properties of these matrices are as follows:

• They may represent measurements.

• They are unitary. Thus, they may represent operations.

• They obey the following commutation relations

[σi, σj] = ιεijkσk, (1.7)

where 1 ≡ x, 2 ≡ y, 3 ≡ z. Thus, they qualify to represent angular
momentum in quantum mechanics.

• Their spectrum is {−1,+1} and they each have 2 orthogonal eigenvec-
tors. Thus, they may correspond to a measurement with 2 possible
outcomes.

These properties qualify Pauli matrices to represent spin measurements and
operations on spin.
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Spin in any arbitrary direction ŝ can be represented as

σs =
∑
i

(
ŝ · î
)
σi. (1.8)

By convention, we carry out measurements along z. The eigenbasis of σz is
represented as follows:

|0〉 =

(
0
1

)
, (1.9)

|1〉 =

(
1
0

)
, (1.10)

where

σz|0〉 = +1|0〉, (1.11)

σz|1〉 = −1|1〉. (1.12)

The eigenbasis will be used as qubits analogous to the values {0, 1} of clas-
sical bits.

Pauli matrices may also be used as operators on the qubits with the fol-
lowing results:

σx|0〉 = |1〉, (1.13)

σx|1〉 = |0〉, (1.14)

σy|0〉 = ι|1〉, (1.15)

σy|1〉 = −ι|0〉, (1.16)

σz|0〉 = |0〉, (1.17)

σz|1〉 = −|1〉. (1.18)

1.6 Entanglement

When pairs of electrons are created in a singlet state and measurements
on the electrons are made individually along the same direction, the results
obtained are perfectly anti-correlated in accordance with the requirement
that angular momentum is conserved.

9



Definition. Entanglement refers to the state of systems when the state of
one cannot be described independently of that of the others.

In quantum mechanics, such entangled electrons in a singlet state may be
represented as

|ψ〉AB =
1√
2

(|0〉A ⊗ |1〉B + |1〉A ⊗ |0〉B), (1.19)

where A and B are the measuring parties.

Paradox

A paradox[2] arises when we consider the invasive measurements of in quan-
tum mechanics. Consider a measurement made at A. Upon making this
measurement, |ψ〉A collapses instantaneously to an eigenvector of the mea-
surement operator. However, due to the form of the entangled state, this
“forces” the measurement outcome at B to be the opposite.

If the measurements made at A and B are spacelike separated events, it
is impossible, in the framework of special relativity, for A to communicate
the measurement outcome to B. Inspite of that, the anti-correlation holds.

1.7 Local Hidden Variables Theory

Measurement outcomes in quantum mechanics are indeterministic. This fea-
ture resulted in a reluctance to accept the theory at a philosophical level.
In addition, the paradox was sought to be resolved. This led to the devel-
opment of the Local Hidden Variables Theory, which attempted to explain
observations within a deterministic framework.

Definition. A hidden variable is one that carries an arbitrary amount of
information possessed by a system. The value of these variables cannot be
controlled and come with an associated probability.

The Local Hidden Variables Theory assumes that at the time of creation,
systems possess such variables λ. The values of these variables can deter-
mine the outcome of a measurement.
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The pair of electrons created at the same point in spacetime may share iden-
tical values of these variables thus eliminating the need for communication
in order to obtain perfectly anti-correlated results.

1.8 Local Hidden Variables and Shared Ran-

domness

Consider measurements made on spins of electrons in a singlet state by A
and B in the framework of the Local Hidden Variables Theory. We have
probabilities pA(rA|sA;λ) and pB(rB|sB;λ) associated with outcomes rA and
rB respectively.

The only way we can investigate a process is by making measurements.
Hence, it is only the measurement outcomes obtained given measurement
settings that are of concern which are represented by pA and pB.

Definition. Shared randomness refers to variables shared between mea-
suring parties whose values, which have associated probabilities, can affect
measurement outcomes.

The same probabilities can be obtained by considering pA(rA|sA;µ) and
pB(rB|sB;µ) instead where µ is shared randomness.

1.9 Bell’s Inequality

Both, quantum mechanics and the local hidden variables theory seemingly
have the same predictions and are distinct only at the philosophical level
where the former adheres to logical positivism and the latter to logical real-
ism.

However, if the restriction on measurement setting being the same for both
parties while measuring electron spin is dropped and furthermore, parties
are allowed to measure along any arbitrary direction, an inequality can be
obtained which must hold if the local hidden variables theory is in play.
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Correlation

We define correlation as follows:

E(s) =
∑
λ,µ

p(λ)p(µ)
∑
r

∏
i

ripi(ri|si;λ;µ) (1.20)

=

〈∏
i

ri

〉
, (1.21)

where any quantity enclosed within 〈·〉 is averaged over.

This is general in that it accommodates multiple observers and accounts
for both λ and µ but either one of the two may be considered.

For continuous variables, summation may be replaced with integration.

For electron spins where rA, rB ∈ {0, 1} and when sA, sB ∈ [0, π) ⊗ [0, 2π),
the local hidden variables theory must satisfy[1]

E(a, c)− E(b, c)− E(a, b) ≤ 1, (1.22)

which is obtained entirely on the basis of probabilistic considerations. It
must be noted that due to considerations of locality, each party is unaware
of the setting of the other. However, from (1.3), (1.8) and (1.19) it can be
seen that quantum mechanics need not obey the inequality.

This is the celebrated Bell’s Inequality which can be tested experimentally to
show that it is infact violated showing that the local hidden variables theory
fails.
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Chapter 2

Hidden Variables in Time

Bell’s inequality is derived for systems of entangled particles on which mea-
surements are carried out at spacelike separations.

• It is used to draw a distinction between the classical realm of physics
and quantum mechanics.

• It has guided experiments that demonstrate the need for quantum me-
chanics.

• It has formed the basis upon which superiority of quantum protocols
over classical protocols is sought to be demonstrated.

The objective of this project is to obtain a similar distinction for processes
taking place over time. The form of an inequality is desirable since they may
accommodate experimental errors unlike strict equalities.

2.1 Contrast with Hidden Variables in “Space”

These processes that take place over time cannot be considered as a simple
analogies to those taking place on entangled particles with spacelike separa-
tion in the following ways:

• For a process that takes place in time, a clear distinction between past
and future must be made. This would require the separation between
measurements to be timelike.
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• The possibility of one-way signalling from past to future cannot be
ignored since the separation between measurements is timelike.

• The measurements can be carried out on the same system. Hence, it
is not required to use a source that produces entangled particles.

• Since measurements are carried out on the same particle, the most
general protocol would allow classical measurements to also be invasive
or equivalently, to couple measurements with operations.

• Due to invasiveness, the protocols must be considered as Markov chains
when there are more than two timesteps unlike for spatially separated
measurements which can be conducted at once independently.

• For spacelike separated measurements, locally the probability distribu-
tions are uniform (over a certain physically determined measure) in the
case of both, quantum mechanics and the local hidden variables theory.
However, in this case of temporal processes this assumption cannot be
made due to invasiveness at every stage that may bias outcomes at the
subsequent stages such that the locally obtained distribution may not
be uniform. The distribution depends upon measurements and opera-
tions carried out in former timesteps. When comparing the outcomes
obtained using different models, local probability distributions must
also be matched.

• The inequality must be obtained for a more general hidden variables
model than a local hidden variables model, more specifically one that
accommodates one-way signalling (from past to future).

In the context of temporal correlations, let probability be expressed as

pt(rt|st) = pt(rt|st;λt;µ) (2.1)

and correlations as

E(s) =
∑
λ1,µ

p(λ1)p(µ)
∑
r

∏
t

rtpt(rt|st;λt;µ). (2.2)
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2.2 Literature Review

Several measures have been presented in literature that distinguish between
classical and quantum mechanics in a temporal scenario. Some of them are
as follows:

2.2.1 Leggett-Garg Inequality

The Leggett-Garg inequality[3] is a mathematical requirement placed on
time-evolving systems that must be obeyed by classical theories.

It is shown to be violated by quantum mechanical processes.

Drawbacks

The inequality is derived based on the following that are assumed to hold for
classical theories:

• Measurements are non-invasive. Any measurement made on a system
does not affect its state.

• Macrorealism holds. The system under consideration has a definite
state.

If the inequality does not hold, it may only disqualify theories for which these
assumptions hold, not all classical theories.

2.2.2 Nonclassicality in Sequential Measurements

A protocol[4] is proposed in which general measurements are carried out se-
quentially on quantum systems.

It is shown that beyond a certain length of the sequence, the correlations
cannot be obtained classically.

Drawbacks

However, there are certain drawbacks to this as follows:
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• The set of parameters for which classical mechanics cannot reproduce
quantum correlations is obtained analytically. However, if this has to
be verified, millions of measurements will be required to be made. This
is not feasible, even numerically.

• It is only the correlations on measurements that are reproduced. Local
probability distributions on measurements are not necessarily repro-
duced if correlations are.

2.3 Infinite Information

When Bell’s inequality was derived, no restriction was placed on the amount
of information carried by λ. Therefore, it holds even when an infinite amount
of information is carried.

Consider an infinite amount information carried as {λt ∈ [−1, 1]}, a set
of hidden variables and λ̂ ∈ [0, π) ⊗ [0, 2π) which defines the state exactly
in our problem of a sequence of measurements taking place on electron spin
over time. The initial value of λ̂ may be predefined.

We may allow the following protocol to act at every step:

rt = sgn(λ̂ · ŝt − λt) (2.3)

and after the measurement has been made

λ̂→ ŝt, (2.4)

where ŝ ≡ s ∈ [0, π)⊗ [0, 2π). From (2.1) and (1.8) it can be seen that this
yields exactly the probability distributions that a qubit would yield and from
(2.2) the correlations.

This is something we would expect intuitively since if λ is allowed to possess
an infinite amount of information, it can simply exactly describe a quantum
state which itself possesses infinite information.

Note that λ may still be considered as hidden as its initial value may follow
a probability distribution on its range.
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2.4 Difference between Hidden Variables and

Shared Randomness

The reason a classical protocol with infinite information content in hidden
variables cannot be disqualified in the case of a temporal sequence of mea-
surements unlike that of spatially separated entangled systems is that the
hidden variables carry information about the system which in this case has
been altered by the measurements made and operations carried out in former
timesteps. This has been exploited in the protocol suggested above where
the system collapses according to the measurement made and thus carries
information about the former setting which can be used to reproduce the
quantum correlations.

In the case of temporal sequences of measurements on systems with hid-
den variables, the probability corresponding to a measurement outcome at
time instance t is given by pt(rt|st;λt(λt−1, st)) which forms a Markov chain.
Here, λt is not a constant even for a given instance of the protocol and thus
cannot be replaced with µ which is. µ is a weaker source of information.

Therefore, when there is the possibility of signalling, a distinction must be
made between shared randomness and hidden variables.

Definition. At every stage, a function determines what the outcome should
be given the measurement setting. Shared randomness is what expresses
itself in determining what this function is out of all possible functions.

This definition of shared randomness is equivalent to the one proposed before
but provides a better defined physical manifestation.

Hidden variables will have the same definition as before.

2.5 Communication Cost of Simulating Quan-

tum Correlations

If, in the case of spatially separated measurements on spin of electrons in a
singlet state, all the shared information is attributed to shared randomness
eliminating the need of a source, it proves to be useful to investigate what

17



happens when 1 bit of information is allowed to be communicated from A to
B[5].

The shared randomness may contain an infinite amount of information and
may thus be mapped to uniform probability distributions on (m̂1, m̂2) which
are unit vectors in 3D space. Let â ≡ sA ∈ [0, π) ⊗ [0, 2π) and b̂ ≡ sB ∈
[0, π)⊗ [0, 2π).

We may choose the following protocol.

1. A outputs rA = − sgn(â · m̂1) ∈ {−1, 1}.

2. A communicates λ = sgn(â · m̂1) sgn(â · m̂2) ∈ {−1, 1} to B.

3. B outputs rB = sgn
[
b̂ · (m̂1 + λm̂2)

]
∈ {−1, 1}.

Due to the uniform probability distribution on values of (m̂1, m̂2), 〈rA〉 =
〈rB〉 = 0 as required by (1.3) and (1.8).

〈rArB〉 =
〈
− sgn(â · m̂1) sgn

[
b̂ · (m̂1 + λm̂2)

]〉
(2.5)

=

〈
− sgn(â · m̂1)×

∑
d=±1

1 + dλ

2
sgn

[
b̂ · (m̂1 + dm̂2)

]〉
(2.6)

Using the symmetries m̂1 ↔ m̂2 and m̂2 ↔ −m̂2

〈rArB〉 =
〈

2 sgn(â · m̂1) sgn
[
b̂ · (m̂2 − m̂1)

]〉
(2.7)

= −â · b̂ (2.8)

which is the expected quantum correlation from (1.3), (1.8), (1.19) and (1.20).
This shows that the quantum correlations can be obtained exactly if there is
shared randomness at the communication cost of 1 bit.

This investigation loses the constraint of locality by allowing for one way
communication making it directly applicable to our problem where the com-
municated bit that carries information about the setting is equivalent to λ
that is propagated in time.
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In the case of measurements of spin on an electron propagating in time,
from (1.3), (1.8) and (1.20) we require

〈rArB〉 = â · b̂ (2.9)

This can be achieved by
rA = sgn(â · m̂1) (2.10)

leaving the rest of the protocol as it is. The local probability distributions
are retained.

The reason for making this investigation for the case of spatially separated
measurements first is to highlight the important distinction between shared
randomness and hidden variables. Inspite of allowing an infinite amount of
shared randomness, the quantum correlations in space can be obtained only
upon allowing 1 extra bit of information to be communicated. This would
not be evident if the quantum correlations in time were to be considered
directly for which no inequality like Bell’s inequality has been introduced.

2.6 Information Content

We wish to obtain a measure that would tell a phenomenon that cannot be
realised within the classical realm of physics apart. But as is now evident,
we cannot allow an arbitrary amount of information to be carried by hid-
den variables. In order to make a fair distinction, the amount of classical
communication used while attempting to simulate a phenomenon should be
appropriately chosen.

We will, therefore, restrict the information content of the classical system
that is measured at different instances in time to the number of bits accessi-
ble from a qubit which is 1 bit (since we restrict this discussion to quantum
states that are qubits).
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Chapter 3

Finite Shared Randomness

3.1 GHZ Paradox

3.1.1 GHZ State

An entangled state of the form[6]

|ψ〉 =
1√
2

(|0〉⊗n + |1〉⊗n) (3.1)

is referred to as the GHZ state.

3.1.2 The Paradox

Consider, for simplicity n = 3. From (1.13) to (1.18), within a local hidden
variables framework, we have

r1(x, λ)r2(y, λ)r3(y, λ) = −1, (3.2)

r1(y, λ)r2(x, λ)r3(y, λ) = −1, (3.3)

r1(y, λ)r2(y, λ)r3(x, λ) = −1, (3.4)

where x and y stand for measurement along the x and y directions respec-
tively.

Taking products of both sides of the above equations, we obtain

r1(x, λ)r2(x, λ)r3(x, λ) = −1. (3.5)
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However, from (1.13) to (1.18) it is required that

r1(x, λ)r2(x, λ)r3(x, λ) = 1 (3.6)

This leads to a contradiction which can be used to disqualify the local hidden
variables theory.

3.1.3 GHZ Correlations

Consider s ∈ {I, x, y, z}⊗n where I represents no measurement made and x,
y and z represent measurements along x, y and z respectively. Let

ns =
n∑
t=1

δsts (3.7)

represent the number of measurements of kind s, where n =
∑

s ns

From (3.1) and (1.13) to (1.18) we can derive the following correlations.

• If nI + nz > 0 and nx + ny > 0, E(s) = 0.

• If nx + ny = 0, E(s) = 1− nz mod 2.

• If nI + nz = 0, E = Re(ιny).

This is due to the following:

• Measurement operators collapse the state into their eigenbasis. In this
case measurements are carried out individually on entangled systems.
Each system will collapse according to the measurement carried out on
it. In order for the correlations in measurement outcomes to yield a
non-zero value, the collapsed state should be (3.1).

• Measurements along x and y swaps |0〉 and |1〉 whereas measurements
along z do not. Any combination of {x, y} and {I, z} would therefore
never result in (3.1) as the state after measurement.

21



3.2 Temporal GHZ Correlations

The work by Markiewicz et. al.[7] provides a method of construction that
can map a certain class of spatial correlations to temporal correlations. The
GHZ correlations belong to this class. Such a map uses generalised Positive
Operator Valued Measures.

The existence of such a map justifies investigating whether we can obtain
GHZ correlations using deterministic temporal protocols.

3.2.1 Method

The information content of λ ∈ {0, 1} is restricted to 1 bit. The following
protocol is checked.

1. A function is chosen which describes, for each t, rt(st, λt) ∈ {−1, 1}
and λt(st, λt−1). This choice of function is parametrised by µ.

2. For each value of (s, λ1, µ), r(s, λ1, µ) was obtained.

3. For each µ, correlations were checked by averaging over λ1 uniformly for
all s for all possible combinations of timesteps. Lower order correlations
are represented by replacing the measurements not chosen by I.

3.3 Results

3.3.1 M = 2

Consider the allowed measurements to be along x and y.

n = 2

Several functions were obtained for which all correlations in agreement with
the GHZ correlations.

n = 3

The total number of possible functions is given by 22nM where M is the num-
ber of measurement settings.
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No function was obtained for which all correlations were in agreement with
the GHZ correlations.

However, several functions were obtained for which all the non-zero correla-
tions matched. This is of interest since µ, that parametrises the functions,
can be considered as shared randomness. An appropriate measure, p(µ), can
always be found such that an average over them reproduces the zero correla-
tions as well. The non-zero ones will always match since only those functions
that satisfy them will be sampled. For the others, p(µ) = 0.

Here, the number of possible functions is 212. Therefore, there are 12 bits of
shared randomness, which is finite unlike the usually investigated problem of
infinite shared randomness.

3.3.2 M = 3

Consider measurement settings along all 3 directions, x, y and z.

Even for n = 2, there was no single protocol that reproduced just the non-
zero correlations.

Here, there are 212 possible functions and hence 12 bits of shared randomness.

Therefore, no classical protocol with 12 bits of shared randomness can re-
produce GHZ correlations for 3 measurement settings even when 1 bit is
communicated.

Even if the shared randomness was to manifest itself in any other way, any
evenly distributed manifestation (which does not result in groupings such
that multiple functions yield the same outcome) will be equivalent to ex-
pressing shared randomness in this manner.
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Chapter 4

Bell’s Inequality with
Communication

Let us review the expression for correlations in the context of temporal pro-
cesses.

E(s) =
∑
λ1,µ

p(λ1)p(µ)
∑
r

∏
t

rtpt(rt|st;λt;µ). (4.1)

4.1 Convex Geometry

Definition. A convex combination
∑

i cipi of points {pi} in an affine
space is a linear combination with the restriction ci ∈ [0, 1] and

∑
i ci = 1.

Theorem. Any convex combination of {pi} will lie on or inside the convex
polytope formed with {pi} as its vertices.

4.2 Joint Probabilities

Due to the form of the correlation, it is useful to define joint probabilities

p(r|s;µ) =
n∏
t=1

pt(rt|st;λt;µ), (4.2)

where n is the number of timesteps since λt = λt(λt−1, st). Here, we fix the
value of λ1 to a constant. Hence, for each µ we have entirely deterministic
protocols and p(r|s;µ) ∈ {0, 1}.
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Consider the affine space [0, 1]⊗n. For each µ, we can generate a point
in the space to represent joint probabilities obtained for each (r, s) where
n = |{(r, s)}|[8].

The value of n can be reduced by considering the following:

• Probability is normalised. One value of r can be eliminated.

• Outcomes of the past are independent of those of the future which can
be used to eliminate joint probabilities in favour of marginal probability
distributions,

p(r|s) =
n∑

i=t+1

K−1∑
ri=0

p(r, r′|s, s′), (4.3)

where r is the set of outcomes up to t, s is the set of settings up to t,
r′ is the set of outcomes after t and s′ is the set of outcomes after t.
Here, in the marginal probability distributions, dependence on settings
of future timesteps is dropped.

It will turn out later that this elimination is not just a mathematical advan-
tage that will take the form of a computational advantage but is a physical
requirement which if not accounted for, will make the problem unsolvable.

For any given probability distribution p(µ), the set of correlations obtained
would lie on or inside the convex polytope generated by these points.

4.3 The Protocol

Consider the following deterministic protocol.

1. At timestep t, a measurement setting st ∈ ZMt is chosen where Mt is
the number of measurement settings that are available at t.

2. λt is received as communication from the previous timestep.

3. The outcome rt(st, λt, µ) ∈ ZKt is provided where Kt is the number of
possible outcomes.

4. λt(st, λt−1, µ) is sent as communication to the next timestep.
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The protocol mentioned above is very general. Based on physical require-
ments, we add the following constraints.

• Kt = K keeping in mind that the objective is to simulate quantum
phenomenon and the number of states a system can attain is constant.

• Amount of information carried by λt, l = dlog2Ke. This also ensures
that K < 2l ×M . This condition avoids obtaining several inequalities
that are equivalent to one another.

Notice that it is not the functional form of λt that is of consequence but the
outcome that it leads to. Multiple functions may lead to the same outcome.
Such groupings in µ may be identified and used to reduce the number of
points which would overlap at a vertex. This is advantageous for longer
protocols that are computationally heavy.

4.4 Inequalities of Interest

Once the vertices of the convex polytope are generated, the facets of this poly-
tope can be obtained. The facets restrict the probabilities to a half-space and
the equation of the plane which can be used to obtain an inequality that will
be obeyed by all vertices.

Some of these facets correspond to trivial inequalities which are the non-
negativity conditions or those that compare marginals to the joint proba-
bilities they are composed of. It is a mathematical requirement that these
inequalities never be violated and hence they are not of interest.

There are other non-trivial inequalities of the form∑
i

cipi ≤
∑
i

ci, (4.4)

when ci ≥ 0 which arise simply from the condition that pi ≤ 1 which can
also never be violated.

Of interest are the inequalities of the kind∑
i

cipi ≤ d, (4.5)
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where
d <

∑
i

ci (4.6)

for which, mathematically, probability distributions may be found that vio-
late them. That leaves scope for violation by quantum phenomenon.

4.5 Methods of Computation

Numerical methods were used to obtain these inequalities. It is computa-
tionally very heavy if all inequalities were to be obtained. This is why, in
every instance of the protocol, only one inequality is obtained. Randomness
is included wherever possible to allow for a different inequality to be obtained
for each instance.

The following protocol was used.

1. The deterministic protocol is followed for every possible sequence of all
possible functions operating at each step to provide an outcome and
operate on the state. Based on the outcomes vertices are generated.

2. Vertices picked at random are added one after the other to a set en-
suring that they define a hyperplane of dimension equal to number of
vertices in the set.

3. Once n vertices are picked, they are used to define an (n− 1)D plane.

4. A point from the plane is chosen at random and is replaced by another
point.

5. 4 is continued till all the vertices are on one side of the plane.

6. The plane obtained is a facet of the polytope and thus the inequality
is obtained.

Avoiding Trivial Inequalities

In order to ensure that we do not obtain trivial inequalities, the following
constraints are added to the protocol.
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At 2, when vertices are chosen to form the set that would eventually de-
fine an (n− 1)D plane, they are chosen such that this plane does not contain
the point 0⊗n in order to avoid trivial inequalities. A vertex, p is picked to
occupy the ith point in the set only when pi = 1 while forming the initial
plane. Also, it is ensured mathematically that such a set of vertices will
always exist.

Theorem. In order for a set of i vertices to define a iD plane that does not
contain 0⊗n, the otherwise only sufficient condition that rank of the matrix
formed by the vertices as rows be equal to i is necessary.

Due to the condition on vertices, the plane formed will never contain 0⊗n

and hence, the condition on rank may be used.

At 4 it is useful to treat the point 0⊗n as the origin inspite of the space
being affine since the point is privileged as seen above. The vertex chosen
at random should have a length greater than the distance of the plane from
the origin. This condition ensures that the protocol does not take arbitrarily
long to run by providing a direction of convergence to a facet.

At 4 it is also ensured that the vertex p chosen at random can replace the
vertex at i only if pi = 1.

There are no checks to eliminate inequalities of the kind in (4.4). Often,
those may be the only inequalities apart from trivial inequalities.

4.6 Results

4.6.1 CHSH Inequality

The protocol was tested for the following parameters:

• n = 2.

• K = 2.

• M1 = M2 = 2.

• No communication was allowed. l = 0.
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This is equivalent to spacelike separated measurements made with infinite
shared randomness.

Of the inequalities obtained, the following is of significance:

2p(0|1)− p(00|00) + p(10|00)− p(00|10) + p(10|10) + p(00|01)

−p(00|11) + p(10|11) ≤ 2. (4.7)

From (1.20) this is the CHSH inequality[9].

4.6.2 Trivial Problem

The protocol was run the following parameters:

• n ∈ {2, 3, 4}.

• K = 2.

• Mt = 2 for all t.

• l = 1 since K = 2.

Only trivial inequalities or those of the kind in (4.4) were obtained in all cases.

The reason behind this is that the amount of information sent from one
step to the next is sufficient to exactly specify what measurement setting
was selected and the outcome at each step can be determined accordingly.

It is expected that for any number of timesteps, only trivial inequalities
or inequalities of the kind in (4.4) will be obtained.

4.6.3 Simplest Non-trivial Problem

The protocol was run for the following parameters[10]:

• n = 2.

• K = 2.

• M1 = 3 and M2 = 2.
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• l = 1 since K = 2.

This is the simplest non-trivial problem.

Of the inequalities obtained, the following are of interest:

−p(0|0) + p(00|00)− p(00|10)− p(10|10)− p(00|20) + p(10|20)

+p(00|01)− p(00|11)− p(10|11) + p(00|21)− p(10|21) ≤ 1, (4.8)

−3p(0|0) + 2p(00|00)− p(10|00)− 2p(00|10)− p(10|10) + p(10|20)

+2p(00|01)− p(10|01) + p(00|11)− p(00|21)− 2p(10|21) ≤ 1. (4.9)
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Chapter 5

Bounded Accuracy when No
Measurement is Made

We introduce a problem[11] in time and investigate the accuracy with which
classical and quantum computers can solve it. This problem, unlike the
others, does not involve measurements made at every step but just requires
the computer to provide an output upon termination. Every step in the
protocol, therefore, is an operation and the value of the processing unit of
the computer at the end of the protocol is taken to be the output.

5.1 The Problem

(s1, s2) is provided progressively at each timestep t as inputs where s1t , s
2
t ∈

{0, 1} to classical and quantum processors with 1-bit capacity, λt ∈ {−1, 1}.
The process may be declared terminated at any instance n. Then, the output
is the value λn. It is required to be of the form

Tn = cos

(
π

2

n∑
j=1

s1j

)
(−1)

∑n
i=1 s

2
i , (5.1)

under the promise that

p(s1) = 2−n+1

∣∣∣∣∣cos

(
π

2

n∑
j=1

s1j

)∣∣∣∣∣ , (5.2)
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where p(s1) is the probability of obtaining the bit sequence s1. It essen-
tially requires that

∑n
i=1 s

1
i mod 2 = 0. We ensure a uniform probability

distribution over all values of s2.

5.2 Bound on Accuracy for Classical Com-

puters

The quantity of interest is
F = 〈λnTn〉, (5.3)

because

λnTn =

{
+1, if the output is correct

−1, otherwise
. (5.4)

We have
F =

∑
(s1,s2)∈{0,1}⊗2n

2−np(s1)λ(s1, s2)Tn. (5.5)

Given the limitations on processor capacity, we may only allow a Markov
chain such that

λt = λt(λt−1; s
1
t , s

2
t ) (5.6)

= Ds1t ,s
2
t

+ Cs1t ,s2tλt−1. (5.7)

Since λt = ±1,
|Cs1t ,s2t |+ |Ds1t ,s

2
t
| = 1. (5.8)

We constraint the form of Cs1t ,s2t such that it can be split further as

Cs1t ,s2t = et(s
1
t ) +

1

2
(−1)s

2
t ct(s

1
t ), (5.9)

where s2t ∈ {0, 1} translates to (−1)s
2
t ∈ {−1, 1} requiring

ct(s
1
t ) = ±1. (5.10)
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Then for t > 1 ∑
(s2t−1,s

2
t )∈{0,1}⊗2

(−1)s
2
t−1+s

2
tλt

=
∑

(s1t−1,s
2
t )∈{0,1}⊗2

(−1)s
2
t−1+s

2
tCs1t ,s2tλt−1 (5.11)

=
∑

s2t−1∈{0,1}

(−1)s
2
t−1ct(s

1
t )λt−1. (5.12)

The non-vanishing terms are due to (5.6).

By induction,
λt = (−1)s

2
t ct(s

1
t )λt−1. (5.13)

Without loss of generality, λ1 = 1. This results in

F =
∑

s1∈{0,1}⊗n

f(s1)
n∏
i=1

ci(s
1
i ), (5.14)

which is bounded as
F ≤ 2−N+1, (5.15)

where

N =

{
n+1
2

, if n mod 2 = 1
n
2

, otherwise
. (5.16)

Here, correlations in values of c can be considered analogous to correlations
in measurement outcomes in Bell’s inequality.

5.3 Violation of the Bound by Quantum Com-

puters

For a quantum computer we may initialise the qubit to the state

|ψ0〉 = 2−1/2(|0〉+ |1〉). (5.17)

If at each t the unitary phase-shift transformation |0〉〈0|+ exp(ι(π/2)(2s2t +
s1t ))|1〉〈1| is applied on the qubit, we obtain

|ψt〉 = 2−1/2

(
|0〉+ exp

(
ι
π

2

t∑
i=1

(2s2i + s1i )

)
|1〉

)
. (5.18)
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Upon termination of the process, a measurement made in the basis {2−1/2(|0〉+
|1〉), 2−1/2(|0〉 − |1〉)} would provide the exact result.

Hence, a quantum computer allows

F = 1, (5.19)

exceeding the bound obtained for classical computers.

Here, the property of a qubit that allows it to possess more information
than what is accessible is exploited. Upon measurement, it may only be
possible to retrieve 1 bit but the promise ensures that the qubit will be in
either of the states that form the basis of measurement.

5.4 Allowing Measurements at Every Timestep

In order to form a connection with the temporal inequalities discussed previ-
ously, we investigate the effect of allowing measurements to be made at every
timestep.

We define a problem where

Tn =

(
n∑
i=1

si

)
mod 4, (5.20)

where st = 2yt +xt is the 2-bit input provided at each t where xt, yt ∈ {0, 1}.
Here, λ ∈ {0, 1}.

The final result is obtained as a function of the measurement output rt at
each t.

Similar to the original problem, the promise holds as in (5.2) and the output
may be demanded at any instance of time.

This problem is equivalent to the original problem because of the following:

• Both problems input 2 bits at each timestep.

• Both problems use a processor with 1-bit capacity.
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• The form of the expression for both problems require the promise to
restrict the output to 1 bit.

We choose the following protocol:

λt = λt−1 ⊕ rt, (5.21)

where if we let A0 = 0 without loss of generality it ensures that the processor
stores the parity of

∑t
i=1 st.

rt = yt ⊕ xt ⊕ λt−1 · xt. (5.22)

Then, the final result may be provided as

2

((
n∑
i=1

ri

)
mod 2

)

=

(
2

((
n∑
i=1

(yi + xi + λi−1 · xi)

)
mod 2

))
mod 4 (5.23)

=

(
2

n∑
i=1

(yi + xi + λi−1 · xi)

)
mod 4 (5.24)

=

(
n∑
i=1

si

)
mod 4 (5.25)

= Tn, (5.26)

since (
n∑
i=1

(xi + 2λi−1 · xi)

)
mod 4 = 0

due to the promise.

Therefore, if we allow for measurements to be made at every stage, even
a classical computer can solve the problem exactly as shown.
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Chapter 6

Conclusion

6.1 Summary

The main results obtained in the direction of understanding the limits of
classical mechanics in explaining temporal phenomena can be summarised
as follows:

• Understanding the gains provided by communication

• Demonstrating that GHZ correlations can be reproduced by classical
protocols

• Proposing a method to obtain inequalities similar to Bell’s inequalities
that may be checked for violation experimentally

• Deriving a bound on accuracy that a classical protocol can achieve
while solving a given problem

6.2 Applications

An understanding of temporal phenomena unique to quantum mechanics can
have several applications such as:

• It deepens understanding of the extent to which analogies between
space and time can be formed and the effect measurement-making has
on the arrow of time.
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• It can guide investigations into the benefits of using quantum comput-
ers.

• It can open up the possibilities to carry out sequential computing that
cannot be handled by classical computers.
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Chapter 7

Future Inquiries

7.1 Ergodicity

It can be investigated whether it is possible to represent temporal evolution of
states by maps. If possible, the maps can be checked for ergodicity. Ergodic
maps would require the expected temporal correlations to be identical to
spatial correlations obtained for the same distribution of states which can be
obtained more easily.

7.2 Bounded Error

Any inequality that is obtained and can be shown to be violated theoretically
in the temporal scenario is expected to involve a large number of measure-
ments making it experimentally and probably even numerically impractical
to verify or even to exploit in applications.

Instead, problems may be proposed that are to be solved by classical se-
quential computing and quantum sequential computing and in both cases

p(n) < ε (7.1)

where p(n) is the probability of an error in the solution given complexity n
and ε is the bound on the error. These bounds can be compared instead
of comparing correlations exactly. Differences in these bounds may show up
even for few measurements.
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7.3 Amount of Finite Shared Randomness Re-

quired to Obtain GHZ Correlations

In 3 the amount of shared randomness among measuring parties was finite.

The amount of shared randomness can be increased by µ′ such that

fµ = fµ(r|s;λ1;µ
′), (7.2)

where fµ is the function that generates the outcome that is parametrised by
µ. Here, µ′ manifests itself as another parameter that affects measurement
outcome.

It can be investigated to find the amount of this shared randomness, in
addition to possessing information about the choice of function at each step,
required to be able to simulate GHZ correlations.

The results can be verified experimentally.

7.4 Obtaining Inequalities for a Sequence of

Observers

The method described in 4 can be used to obtain inequalities for sequences
of any number of measurements. However, it is a very computationally de-
manding task.

7.5 Violation of Bounds on Classical Processes

by Quantum Processes

The method described in 4 obtains inequalities. These inequalities place
bounds on what can be achieved classically. Experiments may be carried out
to investigate which of these bounds can be violated by quantum processes.

39



7.6 Reducing Number of Measurements Re-

quired

The protocol[4] that makes sequential general measurements on quantum
systems, correlations on which cannot be obtained classically had certain
drawbacks as listed previously in 2.2.2.

The conditions on classical protocols can be made stronger by requiring that
local probability distributions are reproduced. In that case classical mechan-
ics may be disqualified even for a shorter sequence of measurements. It would
be more feasible to simulate such measurements numerically and maybe even
make them experimentally.
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