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“You may encounter many defeats, but you must not be defeated. In fact, it
may be necessary to encounter the defeats, so you can know who you are, what
you can rise from, how you can still come out of it.”

Maya Angelou

“Making your mark on the world is hard. If it were easy, everybody would do it.
But it’s not. It takes patience, it takes commitment, and it comes with plenty
of failure along the way. The real test is not whether you avoid this failure,
because you won’t. It’s whether you let it harden or shame you into inaction,
or whether you learn from it; whether you choose to persevere.”

Barack Obama

“A failure is not always a mistake. It may simply be the best one can do under
the circumstances. The real mistake is to stop trying.”

B. F. Skinner

“It does not matter how slowly you go as long as you do not stop.”

Confucius

“Success is the sum of small efforts, repeated day in and day out.”

Robert Collier

“Success is not measured by what you accomplish, but by the opposition you
have encountered, and the courage with which you have maintained the struggle
against overwhelming odds.”

Orison Swett Marden

“Never limit yourself because of others’ limited imagination; never limit others
because of your own limited imagination.”

Mae Jemison

“No matter what you’re going through, there’s a light at the end of the tunnel
and it may seem hard to get to it but you can do it and just keep working
towards it and you’ll find the positive side of things.”

Demi Lovato

“Few things in the world are more powerful than a positive push. A smile. A
world of optimism and hope. A ’you can do it’ when things are tough.”

Richard M. DeVos
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2 Abstract

Firstly, with reference to Ref. [8], I understand that Prof Tomasz and his team
has came out with the theoretical model as shown below in Fig. 1 to investigate
whether an inaccessible object can be used to increase quantum entanglement
between two remote agent particles that individually interact with the inacces-
sible object but not directly coupled to each other. With intuition from this
reference and using it as a base, in this thesis, we will first look into this theo-
retical model where we investigate the entanglement distribution between two
particles A and B via continuous interactions locally with single particle C. Par-
ticles A and B are located in two separated laboratories, which are operated by
agents called Alice and Bob, where particle A is in Alice’s lab and particle B is
in Bob’s lab. Particle A interacts locally with C and particle B interacts locally
with C but A and B does not interact directly. Therefore, the total Hamiltonian
is HAC + HBC and entanglement between A and B increases although by all
quantifiers of classicality C remains classical thoughout the evolution. However,
as we know that entanglement does not grow via local operations and classical
communication, then one might wonder how is this theoretical model compati-
ble to this statement. The answer is that there is entanglement in the tripartite
ABC system already at the beginning.

Looking at this theoretical model, we work out several equations and steps
to measure the negativity between A and B which indicates entanglement. We
were able to analytically prove that there is indeed entanglement between A
and B where it oscillates from 0 to 1

2 .

Moving on from that, since the phenomenon of the above theoretical example
has never been observed in a lab, we then make calculation within physically
motivated model to check for the feasibility of the demonstration. We consider
two electron spins A and B which are confined in separate quantum dots. Our
idea is to utilize the hyperfine interactions between the electron spins and the
spins of the nuclei at the atoms forming the quantum dots with the environment
for entanglement localisation. Therefore, we then came up with a toy model
where only one spin is coupled to the environment to measure the entanglement.
We assume that spin B is not coupled to any outside spins and spin A has
Heisenberg interaction with its single-spin environment A′. Working through
many cases, we found that in the limit of pure dephasing, starting with a suitable
initial state, entanglement can indeed be localised via interactions with classical
local environment.
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3 Introduction

Quantum entanglement is a form of correlations between quantum particles
that does not increase under local operations and classical communication [1].
In the simplest case it involves two particles in separated laboratories, which
are operated by agents usually called Alice and Bob: particle A is in Alice’s lab
and particle B in Bob’s. According to the definition given, if A and B are not
entangled, entanglement between them cannot be created by exchanging (other)
classical particles or information.

In this thesis we model classical communication between the laboratories
by a single particle C which is continuously coupled to A and B. In order to
preserve local character of interactions we assume that A and B are not directly
coupled, i.e. the total three-particle Hamiltonian is of the form HAC +HBC , see
Fig. 1. We will provide example where entanglement between A and B increases
although by all quantifiers of classicality C remains classical thoughout the
evolution. This sounds contradictory to the very definition of entanglement, but
we resolve the tension by showing that generated A : B entanglement is always
smaller than initial entanglement bewteen A and BC together. Therefore, the
whole process could be named as “entanglement localisation” from partition
A : BC to subsystem A : B only. We emphasise the counter-intuitive fact that
this entanglement localisation can happen via classical mediator C.

Figure 1: Objects A and B individually interact with a mediator C, but not
with each other. The interactions are described by Hamiltonians HAC and HBC .
In this thesis all systems A, B and C are two-dimensional, i.e. qubits.
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4 Background

4.1 Pure and Mixed States

A quantum system whose state is known exactly is said to be in a pure state.
We denote the pure state as |ψ〉 and its density matrix as ρ = |ψ〉〈ψ|. Mixed
state, on the other hand, is a mixture of different pure states |ψi〉 and its den-
sity operator is ρ =

∑
j pj |ψj〉〈ψj |, where pj are probabilities. Furthermore,

we need to take note that the different pure states |ψi〉 mentioned above may
not be orthonormal to each other, hence we need to represent ρ in diagonal
representation so that the different pure states can form orthonormal basis and
the new probabilities generated will fall into the diagonal representation.

By calculating trace tr(ρ2), we are able to determine whether a state is pure or
mixed. When tr(ρ2) gives 1, this shows that ρ is a pure state. Otherwise, when
its value is less than 1, it reveals a mixed state [2]. For more information of how
the trace can be calculated, one may refer to the Appendix section below.

4.2 Separability for Pure and Mixed States

In this section, we will be looking at what separability means in bipartite system
as well as tripartite system for pure and mixed states. This is rather useful to
our further calculations in this report.

4.2.1 Separability for Pure States

Suppose the quantum state of a bipartite system XY is pure, if the state can
be written in this form:

|ψxy〉 = |ψx〉 ⊗ |ψy〉, (1)

Then we can say that the state is separable. If not, then entangled.

For a quantum state of tripartitie system XY Z, separability can come in two
forms, it can be completely separable or bi-separable.

Suppose the quantum state for tripartite system XY Z is pure and if it is com-
pletely separable, it can be written in this form:

|ψxyz〉 = |ψx〉 ⊗ |ψy〉 ⊗ |ψz〉. (2)

This equation also shows that all X, Y and Z states are definite states and they
behave locally as three completely independent subsystems [2].

On the other hand, suppose the quantum state for tripartite system XY Z is
pure and if it is bi-separable, it can be written in this form:

|ψxyz〉 = |ψxy〉 ⊗ |ψz〉. (3)
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This equation shows that the state XY and Z are pure and independent, how-
ever there is entanglement existing between subsystem X and Y [2]. Further-
more, for bi-separable states, it can come in many forms, for instance one ex-
ample is Eq. (3). Others can be as follows,

|ψxyz〉 = |ψxz〉 ⊗ |ψy〉, (4)

|ψxyz〉 = |ψx〉 ⊗ |ψyz〉. (5)

Hence, one must indicate clearly the state is separable in which partition. For
example, Eq. (3) can be written as XY : Z separable, Eq. (4) can written as
XZ : Y separable and lastly Eq. (5) can be written as X : Y Z separable.

4.2.2 Separability for Mixed States

Suppose the quantum state of a bipartite system XY is mixed, if the state can
be written in this form:

ρxy =
∑
i

λi|ψxi 〉〈ψxi | ⊗ |ψ
y
i 〉〈ψ

y
i | (6)

=
∑
i

λiρ
x
i ⊗ ρ

y
i (7)

where λi are probabilities.
Then we can say that the state is separable. If not, then entangled.

For a quantum state of tripartitie system XY Z, similar to pure states, sep-
arability can come in two forms, it can be completely separable or bi-separable.

Suppose the quantum state for tripartite system XY Z is mixed and if it is
completely separable, it can be written in this form:

ρxyz =
∑
i

λi|ψxi 〉〈ψxi | ⊗ |ψ
y
i 〉〈ψ

y
i | ⊗ |ψ

z
i 〉〈ψzi | (8)

=
∑
i

λiρ
x
i ⊗ ρ

y
i ⊗ ρ

z
i (9)

For bi-separable states, similarly it can be separable in three partitions, for
instance we may look at XY : Z separable, it can be written in this form:

ρxyz =
∑
i

λi|ψxyi 〉〈ψ
xy
i | ⊗ |ψ

z
i 〉〈ψzi | (10)

=
∑
i

λiρ
xy
i ⊗ ρ

z
i (11)
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4.3 Negativity as Entanglement Quantifier

In this thesis we only use negativity to measure entanglement. Negativity was
introduced in Ref. [3] and it is defined for a bipartite state as follows:

NX:Y (ρ) =
∑
j

|λ−j |, (12)

where λ−j are negavite eigenvalues of the matrix obtained by partial transpo-
sition of ρ. Partial transposition can be done on any subsystem, X or Y , the
final result is the same. We note that subsystem X can be composed of many
particles. For example, in a tripartite state ρABC one can discuss bipartite en-
tanglement between A and BC together, so X = A and Y = BC.

Here is how partial transposition of ρ works. First we have our ρ,written in
some orthonormal bases for subsystems X and Y:

ρ =
∑

X,Y,X′,Y ′=0,1

ρXY,X′Y ′ |XY 〉〈X ′Y ′|. (13)

Doing partial transposition on X means

ρXY,X′Y ′ −→ ρX′Y,XY ′ (14)

where we switch X and X ′.
Hence we get,

ρTX =
∑

X,Y,X′,Y ′

ρX′Y,XY ′ |XY 〉〈X ′Y ′|. (15)

Lastly, negative eigenvalues are obtained through finding determinant of the
matrix through the formula: det(ρTx − Iλ) = 0.

Furthermore, separable states (not entangled states) give rise to positive eigen-
values after partial transposition. One can prove it by starting with the general
form of separable state,

ρ =
∑
i

µiρXi ⊗ ρY i, (16)

where µi are probabilities.
The partial transpose, say with respect to X, gives

ρTx =
∑
i

µi(ρXi)
T ⊗ ρY i. (17)

Now, any density matrix can be diagonalized,

ρXi =
∑
j

ηj |j〉〈j|, (18)

where |j〉 form diagonal basis and ηj are new probabilities (eigenvalues).
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From this, one can see that ρTXi is still a valid density matrix. So, (ρXi)
T ⊗ ρY i

is also a valid density matrix for X and Y . The mixture
∑
i µi(ρXi)

T ⊗ρY i will
therefore also be a valid density matrix, ie. it has positive eigenvalues.

4.4 Discord as Nonclassicality Quantifier

Quantum discord is a measure of nonclassical correlations between two subsys-
tems of a quantum system [4–6]. It is simplest to introduce discord by giving a
class of states for which it vanishes:

χ =
∑
y

pyρx|y ⊗ |y〉〈y|, (19)

where it is important that the states {|y〉} are orthogonal. For this class of states
subsystem Y could therefore be measured in the basis {|y〉} and this measure-
ment (when averaged over all measurement results) does not modify the state
χ. In other words vanishing discord implies that there is a local measurement
which does not modify (perturb) the whole measured system.

Discord can then be introduced as a distance to a set of states in Eq. (19),
see e.g. [7]. It is clear from this description that discord is not a symmetric
quantity. We denote by DX|Y discord measured as a distance to the set of
states in Eq. (19), where the states of subsystem Y are orthogonal, and by
DY |X discord measured as a distance to an analoguous set, where this time the
states of subsystem X are orthogonal.
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5 Entanglement Localisation Via Classical Me-
diator

In this section we review perhaps the simplest example of this phenomenon,
given in Ref. [8]. Consider three qubits (two-level systems) in the following
initial state:

ρ0 =
1

2
|ψ+〉〈ψ+| ⊗ |+〉〈+|+

1

2
|φ+〉〈φ+| ⊗ |−〉〈−|, (20)

where the order of parties is ABC and the states being mixed are as follows:

|ψ+〉 =
1√
2

(|01〉+ |10〉), (21)

|φ+〉 =
1√
2

(|00〉+ |11〉), (22)

|±〉 =
1√
2

(|0〉 ± |1〉). (23)

The first two states are so called Bell states and they describe particles A and
B. The last line gives the states of C. This initial state has the following
entanglement properties:

NA:B(ρ0) = 0, NA:BC(ρ0) = NAC:B(ρ0) =
1

2
, (24)

which are easy to verify by direct computation.
Consider now the following Hamiltonian coupling A and B through the me-

diator C:
H = h̄ω(σXA ⊗ IB ⊗ σXC + IA ⊗ σXB ⊗ σXC ), (25)

where I is the 2 × 2 identity matrix, σX stands for Pauli x matrix and the
index clarifies on which subsystem the matrix is acting. The interaction energy
of every pair of subsystems is set to h̄ω. Clearly, the states |±〉 of C are the
eigenstates of the Hamiltonian and hence they are stationary. At all times
system C is in one of these two orthogonal states and we have:

ρt =
1

2
|ψt〉〈ψt| ⊗ |+〉〈+|+

1

2
|φt〉〈φt| ⊗ |−〉〈−|. (26)

Explicit calculation shows:

|ψt〉 = cos(2ωt)|ψ+〉 − i sin(2ωt)|φ+〉, (27)

|φt〉 = cos(2ωt)|φ+〉+ i sin(2ωt)|ψ+〉. (28)

In this calculation we used the fact that the total unitary dynamics operator
U = exp(− i

h̄Ht) can be written as U = UACUBC and each of these operators
is given by

UAC = exp(−iω(σXA ⊗ I ⊗ σXC )) = cos(ωt)I − i sin(ωt)σXA ⊗ I ⊗ σXC ,(29)

UBC = exp(−iω(I ⊗ σXB ⊗ σXC )) = cos(ωt)I − i sin(ωt)I ⊗ σXB ⊗ σXC .(30)

11



Since the states of C are orthogonal at all time there is no quantum discord
throughout the evolution:

DAB|C(ρt) = 0. (31)

One also finds:

NA:B(ρt) =

√
1− cos(8ωt)

2
√

2
, NA:BC(ρt) =

1

2
. (32)

The dynamics of entanglement in AB subsystem is plotted in Fig. 2.

Figure 2: This figure shows a plot of NA:B against ωt, where we let ωt range
from 0 to 2π. The plot shows entanglements between A and B. It oscillates from
0 (no entanglement) to 1

2 , which corresponds to maximally entangled state. At
all times system C is in one of two orthogonal states, hence classical.
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6 Original Calculations

In the previous section we have given an example where quantum entanglement
is localised into a subsystem via classical mediator. Since this phenomenon has
never been observed in a laboratory, we now make calculations within physically
motivated model to check for the feasibility of the demonstration.

We consider two electron spins A and B which are confined in separate quan-
tum dots. Quantum dots received considerable theoretical and experimental
attention, see Refs. [10–15] for reviews, which result in effective techniques for
the initialization, manipulation and readout of the spin state [9]. However, the
coherent evolution of spin states suffers from the destructive effects of the hy-
perfine interaction between the electron spins and the spins of the nuclei at the
atoms forming the quantum dots [9]. Our idea is to utilize these interactions
with the environment for entanglement localisation. We first calculate entangle-
ment dynamics in a toy model where only one spin is coupled to the environment
and we start with the state ρ0 given in Eq. (20).

6.1 The Toy Model

We assume that spin B is not coupled to any outside spins and spin A has
Heisenberg interaction with its single-spin environment A′, see Fig. 3.

Figure 3: This figure shows spin B is not coupled to any outside spins and spin
A has Heisenberg interaction with its single-spin environment A′.
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Hence the interaction Hamiltonian is

H = −ασZA − ασZB + βσZAσ
Z
A′ +

β

2
(σ+
Aσ
−
A′ + σ−Aσ

+
A′), (33)

where α = gµBB, g is the effective electron g factor, µB is the Bohr magneton,
B is the applied magnetic field along z axis and β is the coupling constant of
the hyperfine interaction.

We will now look into three ”extreme” cases below.

6.1.1 Low Magnetic Field (α� β)

In this limit, the total hamiltonian H is effectively given by the last two terms
in Eq. (33),

H = βσZAσ
Z
A′ +

β

2
(σ+
Aσ
−
A′ + σ−Aσ

+
A′), (34)

where

σ± = σX ± iσY . (35)

By simplifying Eq. (34), we get

H = β(σXA σ
X
A′ + σYAσ

Y
A′ + σZAσ

Z
A′), (36)

where

σX = |0〉〈1|+ |1〉〈0|, (37)

σY = −i|0〉〈1|+ i|1〉〈0|, (38)

σZ = |0〉〈0| − |1〉〈1|. (39)

For this calculation, we start with the initial state given in the Eq. (20). From
evolution, we found the following unitary operator:

U = e−
iHt
h̄ = e−

itβ
h̄ (−3)|ψ−〉AA′〈ψ−|+ e−

itβ
h̄ (1)|ψ+〉AA′〈ψ+|

+ e−
itβ
h̄ (1)|φ+〉AA′〈φ+|+ e−

itβ
h̄ (1)|φ−〉AA′〈φ−| (40)

where we used the fact that the Bell states are the eigenstates of Hamiltonian
in Eq. (36).

Using the unitary operator U found above, we further calculate the following:

U |ψ+〉|+〉 =
1

2
√

2
[−e

i3βt
h̄ |ψ−〉|0〉+ e

i3βt
h̄ |ψ−〉|1〉+ e

iβt
h̄ |ψ+〉|0〉+ e

iβt
h̄ |ψ+〉|1〉

+ e
iβt
h̄ |φ+〉|1〉+ e

iβt
h̄ |φ+〉|0〉+ e

iβt
h̄ |φ−〉|1〉 − e

iβt
h̄ |φ−〉|0〉] = |ζt〉,
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U |φ+〉|−〉 =
1

2
√

2
[−e

i3βt
h̄ |ψ−〉|0〉 − e

i3βt
h̄ |ψ−〉|1〉 − e

iβt
h̄ |ψ+〉|0〉+ e

iβt
h̄ |ψ+〉|1〉

+ e
iβt
h̄ |φ+〉|0〉 − e

iβt
h̄ |φ+〉|1〉+ e

iβt
h̄ |φ−〉|0〉+ e

iβt
h̄ |φ−〉|1〉] = |ηt〉.

Thus, we have the density matrix at time t,

ρt =
1

2
|ζt〉〈ζt|+

1

2
|ηt〉〈ηt| (41)

By tracing out A′ from Eq. (41), one gets ρABt from which entanglement between
A and B can be calculated. One can also calculate entanglement in the partition
A : BA′ from Eq. (41) by partially transposing system A. The results are plotted
in Fig. 4 below, where ω is given by β

h̄ . We can see that NA:B grows but one
can verify that A′ is also entangled.

Figure 4: Plot of NA:B(ρt) and NA:BA′(ρt) against ωt, where we let ωt range
from 0 to 2π.

6.1.2 High Magnetic Field (α� β)

In this case, the total hamiltonian H is effectively given by the first two terms
in the Eq. (33),

H = −ασZA − ασZB . (42)
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One can see that these terms are local and therefore do not create entangle-
ment. Recall that entanglement cannot grow via local operations and classical
communication [1]. The corresponding unitary operator is given by

U = UA ⊗ UB ⊗ 1̂A′ , (43)

where e.g. UA = exp(−iαtσZA/h̄). The right hand side terms are local unitary
operators that keep entanglement constant (cite), i.e. not only it does not grow,
it also does not decay. For example, starting with any intial state ρ, one can
calculate initial entanglement NA:B and NAB:A′ . The corresponding evolution
will result in constant entanglement. In fact, entanglement in other partitions
NA:A′ , NB:A′ , NA:BA′ and NB:AA′ is also constant.

6.1.3 Pure Dephasing

In this case, the total hamiltonian H is effectively given by the first three terms
in the Eq. (33),

H = −ασZA − ασZB + βσZAσ
Z
A′ . (44)

We start with an initial state,

ρ0 =
1

2
|ψ1〉〈ψ1| ⊗ |0〉〈0|+

1

2
|ψ2〉〈ψ2| ⊗ |1〉〈1|, (45)

where

|ψ1〉 =
1√
2

(|+−〉+ | −+〉), (46)

|ψ2〉 =
1√
2

(|+ +〉+ | − −〉). (47)

Note that all the terms in the total hamiltonian H commute, hence the
evolution is given by

U = ei
ασZ
A
t

h̄ ei
ασZ
B
t

h̄ e−iβ
σZ
A
σZ
A′ t

h̄ (48)

We know that the first two terms on the right-hand side do not create entan-
glement since they are coming from local Hamiltonian. Therefore, the unitary
operator for creating entanglement is given by the last term:

U = e−iβ
σZ
A
σZ
A′ t

h̄ = cos

(
β

h̄
t

)
1− i sin

(
β

h̄
t

)
σZAσ

Z
A′ (49)

Note that this is similar to our earlier example in the Eq. (26). Here we have,

|ζt〉 = U |ψ1〉|0〉 = |ψt1〉|0〉, (50)

|ηt〉 = U |ψ2〉|1〉 = |ψt2〉|1〉, (51)
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where

|ψt1〉 = cos

(
2
β

h̄
t

)
|ψ1〉 − i sin

(
2
β

h̄
t

)
|ψ2〉, (52)

|ψt2〉 = cos

(
2
β

h̄
t

)
|ψ2〉+ i sin

(
2
β

h̄
t

)
|ψ1〉. (53)

We get the state at time t as shown below,

ρt =
1

2
|ψt1〉〈ψt1| ⊗ |0〉〈0|+ |ψt2〉〈ψt2| ⊗ |1〉〈1|, (54)

where DAB|A′(ρt) = 0. Furthermore, by tracing out system A′, we get

ρtAB =
1

2
|ψt1〉〈ψt1|+ |ψt2〉〈ψt2|. (55)

From here, one can calculate the entanglement and the results are the same as
plotted in Fig. 2, but with ω is given by β

h̄ . We can see that entanglement grows
via classical A′.

7 Conclusions

We have reviewed the phenomenon of entanglement localisation via classical me-
diator and provided its detailed calculations. Next we looked into the system
of two electron spins confined in separate quantum dots as a possible platform
to demonstrate the localisation. We computed entanglement between the spins
in a toy model where only one electronic spin is coupled to a single-qubit envi-
ronment. In the limit of pure dephasing we found that starting with a suitable
initial state, entanglement can indeed be localised via interactions with classical
local environment. In the future it is necessary to extend this model to more
spins in the environment and to more natural initial states.
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8 Appendix

Refer to above section 4.1, this is how the trace tr(ρ2) can be calculated:
If the quantum system is in pure state, given that ρ = |ψ〉〈ψ|,

tr(ρ2) = tr(|ψ〉〈ψ|ψ〉〈ψ|). (56)

In addition, we know the fact that tr(|φ〉〈ψ|) = 〈ψ|φ〉 and by normalization,
〈ψ|ψ〉 = 1.
Using these, we get

tr(ρ2) = 〈ψ|ψ〉〈ψ|ψ〉
= (1)(1)

= 1.

If the quantum system is in mixed state, given that ρ =
∑
j pj |ψj〉〈ψj |,

tr(ρ2) = tr(
∑
i

pi|ψi〉〈ψi|
∑
j

pj |ψj〉〈ψj |)

= tr(
∑
i

∑
j

pipj |ψi〉〈ψi|ψj〉〈ψj |)

=
∑
ij

pipjtr(|ψi〉〈ψi|ψj〉〈ψj |)

Similarly, using the fact that tr(|φ〉〈ψ|) = 〈ψ|φ〉, therefore we get

tr(ρ2) =
∑
ij

pipj | 〈ψj |ψi〉 |2 . (57)

Now, we can consider two cases:
For i = j, and using the fact that 〈ψi|ψi〉 = 1, we get

| 〈ψi|ψi〉 |2= 1. (58)

For i 6= j, and using the fact that 〈ψi|ψj〉 = 0, we get

| 〈ψj |ψi〉 |2= 0. (59)

Hence, taking both cases above into account,

tr(ρ2) =
∑
ij

pipj | 〈ψj |ψi〉 |2

=
∑
i

p2
i

< 1.
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