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Abstract

In this project, we investigate into the correlations between Rydberg atoms, excited atoms with one

electron that possesses a very high principal quantum number, and the interactions that occur between

them that can be used for the formation of quantum gates. We first review the fundamentals of quantum

gates, followed by the nature of the interactions between Rydberg atoms and the Rydberg blockade. We

study the entanglement between Rydberg atoms and the effect of the strength of dipolar interactions

on the amount of generated entanglement. The crux of this study is the examination of the strong

interactions between Rydberg atoms and their use in the construction of quantum gates. The final

section of this report provides suggestions on future research along this direction.
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2 Introduction

Entanglement is a quantum correlation in which a quantum state cannot be assigned independently to

every subsystem but can only be defined for the system as a whole. The concept of entanglement is at

the heart of our understanding of quantum mechanics and serves much purpose in the study of strongly

correlated systems. Entanglement between two particles can be generated by making them interact. It is

difficult to produce entanglement in systems comprising of neutral atoms, as the interactions between neutral

atoms are much weaker than those between ions. Here is where Rydberg atoms feature.

Rydberg atoms are neutral atoms with one electron in a state of high principal quantum number n. Due

to their large size in comparison with atoms in the ground state and their high sensitivity to external fields,

they form strong interatomic interactions with other Rydberg atoms. This feature of Rydberg atoms can be

used to entangle neutral atoms based on the formation of the Rydberg blockade, which provides evidence

for the fact that Rydberg atoms can exert a strong influence on each other even when separated by large

distances that are orders of magnitude larger than the atomic size[6]. This approach has been proposed as

a method to construct fast quantum gates [10][11][12] and generate various entangled states [23][24].

The unique feature of the Rydberg blockade can be used in the construction of quantum gates. If you

have atoms in a small region, and you excite one of them to the Rydberg state, and then if you tried to

excite another atom, the energy required would have changed due to the excitation of the first atom. This

is used to turn on or turn off another atom by using a control atom.

Quantum computing is an extremely interesting research area with much promise in increasing computa-

tional power. Quantum computing also provides a platform to model quantum mechanical problems, as the

modeling of such problems on a classical computer becomes hard to deal with for an extremely large number

of particles.

This study aims to examine the interatomic interactions between Rydberg atoms, especially focusing on the

dipole-dipole interaction. We will show the effect of strong and weak dipole-dipole interactions on generated

entanglement and the probability of excitation of a detector.

Finally, the study ventures into a controlled-SWAP gate, constructed for three qubits, formed using

Rydberg atoms. It reveals that controlled unitaries are relatively simple to implement via the Rydberg

blockade.
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3 Quantum computation

This section of the report introduces some principles of quantum computation. The power of quantum com-

puters arises from quantum phenomena such as entanglement and the superposition of quantum states. The

fundamental unit of quantum computation is a qubit, a two-level system that can be prepared and measured

controllably. A quantum computer can be viewed as a collection of n qubits such that its wavefunction lies

in a 2n−dimensional complex Hilbert space. The evolution of this wavefunction in time is unitary and is

governed by the Schrödinger equation.

A quantum computation is performed in the following three steps:

� Prepare of the input state

� Apply the desired unitary transformation on the input state

� Measure the output state

We now discuss the basics of quantum computation.

3.1 Two-level systems

The qubit: The qubit is the basic unit of quantum computation. It is a two-level quantum system

described by a two-dimensional complex Hilbert space. The basis of a qubit is

|0〉 ≡

 1

0

 ,
and

|1〉 ≡

 0

1

 .
Any state of a qubit can be written as

|ψ〉 = α |0〉+ β |1〉 ,

where α and β are complex and satisfy the normalization condition

|α|2 + |β|2 = 1.

State vectors are defined up to a global phase that has no physical significance here. The generic state of a

qubit is written as

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 .

|ψ〉 =

 cos θ2

eiφ sin θ
2

 .
Here, 0 6 θ 6 π and 0 6 φ < 2π. Due to this parameterization of a qubit, it can have a continuum of states.

There is a geometrical representation of this state on a sphere of radius 1 called the Bloch sphere.
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The Bloch sphere: The Bloch sphere is a geometric picture of a qubit. Due to the normalization condition

imposed on α and β, the state of the qubit can be represented on a sphere of radius 1. The sphere can be

embedded into three-dimensional space (x = cosφ sin θ, y = sinφ sin θ, z = cos θ). The state defined in the

previous section can be rewritten as

|ψ〉 =


√

1+z
2

x+iy√
2(1+z)

 .
A Bloch vector is a vector whose components mark a point on the Bloch sphere. Each Bloch vector satisfies

the condition x2 + y2 + z2 = 1. Angles θ and φ also define a Bloch vector, as shown in the figure below 1.

Figure 1: The Bloch sphere is a geometric representation of a qubit. The state can be defined by the angles

θ and φ on a sphere of radius 1. Figure obtained from [9].

Measurement of the state of a qubit: An arbitrary observable with ±1 outcomes can be parameterized

by a unit vector similar to the parameterization of quantum states. We shall now show how the coordinates

of a qubit state can be measured. For that, we would need the Pauli operators, written in the computational

basis as follows:

X = σx =

 0 1

1 0

 ,
Y = σy =

 0 −i

i 0

 ,
and

Z = σz =

 1 0

0 −1

 .
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Applying these on |ψ〉 = cos θ2 |0〉+ eiφ sin θ
2 |1〉 ,

σx |ψ〉 = eiφ sin
θ

2
|0〉+ cos

θ

2
|1〉 ,

σy |ψ〉 = −ieiφ sin
θ

2
|0〉+ i cos

θ

2
|1〉 ,

and

σz |ψ〉 = cos
θ

2
|0〉 − eiφ sin

θ

2
|1〉 .

The expectation values for the state are

〈ψ|σx |ψ〉 = sin θ cosφ = x,

〈ψ|σy |ψ〉 = sin θ sinφ = y,

and

〈ψ|σz |ψ〉 = cos θ = z.

Therefore, (x, y, z) can be obtained by measurements of σx, σy and σz respectively.

3.2 Single-qubit gates

The operations on a qubit are defined by 2x2 unitary matrices, as they must preserve the normalization

condition. This section will introduce two single-qubit gates: the Hadamard gate and the phase-shift gate.

The Hadamard gate: This gate is defined as

H =
1√
2

 1 1

1 −1

 ,
and it turns the computational basis |0〉 , |1〉 into the new basis |+〉 , |−〉, the states of which are a superposition

of the states of the computational basis:

H |0〉 =
1√
2

(|0〉+ |1〉) ≡ |+〉

H |1〉 =
1√
2

(|0〉 − |1〉) ≡ |−〉

The phase-shift gate: This gate is defined as

Rz(δ) =

 1 0

0 eiδ

 ,
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and it turns |0〉 to |0〉 and |1〉 to eiδ |1〉. Global phases have no physical meaning and therefore, the states of

the computational basis remain unchanged. The action of the phase-shift gate on a single qubit is given by

Rz(δ) |ψ〉 =

 1 0

0 eiδ

 cos θ2

eiφ sin θ
2

 =

 cos θ2

ei(φ+δ) sin θ
2

 ,
and this generates a counterclockwise rotation about z through an angle δ on the Bloch sphere.

Any unitary operation on a single qubit can be constructed using only the above two gates [7].

3.3 Entanglement generation and controlled gates

Entanglement appears in the presence of two qubits. A generic two-qubit state can be expressed in the

computational basis as

|ψ〉 = α |00〉+ β |01〉+ γ |10〉+ δ |11〉 ,

where, α, β, γ and δ are complex coefficients that obey the normalization condition

|α|2 + |β|2 + |γ|2 + |δ|2 = 1.

This state is defined up to an overall phase factor, and there are six degrees of freedom. In general, it is not

possible to consider |ψ〉 as a separable state.

A state |ψ〉 is separable when one can write |ψ〉 as

|ψ〉 = |ψ1〉 ⊗ |ψ0〉 ,

where |ψ1〉 and |ψ0〉 are the wavefunctions of the two subsystems of the state. A separable state comprising

of two qubits has four degrees of freedom, obtained by considering two parameters for each qubit on the

Bloch sphere.

A single-qubit state, as defined in 3.2, cannot generate entanglement in an n-qubit system. This is because,

if we were to consider a separable state

|ψ〉 = |ψn−1〉 ⊗ |ψn−2〉 ⊗ ...⊗ |ψ0〉 ,

any qubit can be moved on its Bloch sphere, giving

|ψ′〉 = |ψ′n−1〉 ⊗ |ψ′n−2〉 ⊗ ...⊗ |ψ′0〉 ,

where any state of the type |ψj〉 can be transformed by single-qubit gates acting on the jth qubit in any

superposition of the states |0〉 and |1〉, but the n-qubit state is still separable.

Therefore, in order to prepare an entangled state, there is a need for inter-qubit interactions through two-

qubit gates. A two-qubit gate that can generate entanglement is the controlled-NOT gate or the CNOT

gate. The working of this gate is elucidated in section 3.4.
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The Bell basis: From 3.4, we can see that CNOT gates can generate entanglement. The entangled states

of the Bell basis, given by

|φ+〉 =
1√
2

(|00〉+ |11〉),

|φ−〉 =
1√
2

(|00〉 − |11〉),

|ψ+〉 =
1√
2

(|01〉+ |10〉),

|ψ+〉 =
1√
2

(|01〉 − |10〉),

can be obtained from the computational basis by the following transformations

|00〉 → |φ+〉 ,

|01〉 → |ψ+〉 ,

|10〉 → |φ−〉 ,

|11〉 → |ψ−〉 ,

which is invertible as both the Hadamard gate and the CNOT gate are self-inverse. As a result of this, any

state of the Bell basis can be transformed into a separable state.

3.4 Quantum gates

Any unitary operation in the Hilbert space of n qubits can be decomposed into single-qubit gates and two-

qubit CNOT gates [7]. This section elaborates upon two two-qubit gates that will be used later in the

report.

SWAP gate: A SWAP gate is a two-input two-output gate that swaps the logical values of the states

entered. Figure 2 gives the truth values of the SWAP gate. The gate is represented in circuit diagrams as

in the figure 3.

Figure 2: Truth table for the SWAP gate.
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Figure 3: Circuit representation for the SWAP gate. Here a and b are the inputs. a′ and b′ are the outputs.

CNOT gate: A CNOT gate is a controlled-NOT gate, in which one atom acts as the control, while the

other undergoes the NOT operation. If the control atom has the logical value of 0, the second atom does

not change its truth value. Figure 4 gives the truth values of the CNOT gate. The gate is represented in

circuit diagrams as in the figure 5.

Figure 4: Truth table for CNOT gate.

Figure 5: Circuit representation for the CNOT gate. Here a and b are the inputs. a′ and b′ are the outputs.

As mentioned in 3.3, the CNOT gate is a two-qubit gate that can generate entanglement.

In the CNOT gate, the first qubit acts as the control and the second as the target. This gate flips the state

of the target atom if the state of the control atom is |1〉 and does nothing if the state of the control is |0〉.
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The matrix representation of the CNOT gate is as follows:
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 .

Taking the square of the above matrix, one can conclude that the CNOT gate is self-inverse.

We can generate entangled states using the CNOT gate as follows:

CNOT (α |0〉+ β |1〉) |0〉 = α |00〉+ β |11〉 ,

which is a non-separable state, provided α, β 6= 0.
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4 Rydberg atoms

Rydberg atoms are atoms that are excited to a high energy state and have one electron in a state of high

principal quantum number n. The focus was shifted onto them in the 1970s, but their role in atomic physics

can be traced back to the infancy of quantitative atomic spectroscopy, as described by H. E. White in his

text on Introduction to Atomic Spectra published in 1934. The first historic appearance of Rydberg atoms

is in the Balmer series of atomic Hydrogen, and is given by

λ =
bn2

n2 − 4
,

where λ gives the wavelength, b is 3645.6Å and n = 2 to higher levels for the Balmer series.

J. R. Rydberg generalized the above expression for each pair of states n1 and n2, such that the energy

difference between the two states is as follows:

W2 −W1 =
k2Z2e4m

2~2

(
1

n2
1

− 1

n2
2

)
,

where e is the charge of the electron, m is the mass of the electron, k is 1
4πε0

and Z is the atomic number.

k2Z2e4m
2~2 = Ry, where Ry is the Rydberg constant, given by 109721.6cm−1. The expression for the wavelength

thus obtained is:
1

λ
= Ry

(
1

n2
1

− 1

n2
2

)
.

Compared to ground state atoms, Rydberg atoms exhibit large sizes. For example, for a Rubidium (Rb) in

the ground state (5S), the orbit radius is 5.632a0. If now, we compare this with a Rb atom in the Rydberg

state (43S) whose orbit radius is 2384.2a0 [4]. Their orbit radius is given by

〈r〉 =
1

2
(3(n∗)2 − l(l + 1)),

where l is the angular quantum number and n∗ is the effective quantum number given by n∗ = n− δn,l,j [1],

the details of which can be found in section 4.1. From the above formula, one can conclude that the size of

Rydberg atoms is proportional to n2.

Rydberg atoms are characterized by an electron in a high energy state with principal quantum number n.

Due to this, the properties of Rydberg atoms are highly ”exaggerated”. For instance, the binding energy of

Rydberg atoms, which is of the order of 300GHz for n = 100S, is very small. Binding energy is given by

E =
e2

a0

m−me

m

1

2(n− δn,l,j)2
,

where e2 =
q2e

4πε0
, me is the mass of the electron, m is the mass of the atom, qe is the electronic charge, a0 is

the Bohr radius and ε0 is the permittivity of free space. n∗ = n− δn,l,j is the effective quantum number 4.1

where δn,l,j is the quantum defect that mainly depends on the orbital angular momentum l of the outermost
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electron. The orbits of the low l angular states are the most perturbed with large quantum defect 4.1 [13].

The radiative lifetime of Rydberg atoms is very long in atomic scale, in the order of several µs. For example,

the lifetime of Rydberg atoms, that is determined by the radiative decay to lower levels and by transitions

to higher and lower lying levels induced by blackbody radiation, is of the order of 100 or so µs for n > 40,

which is much larger than the lifetime of the 5P 3
2
, which is approximately 26.2ns[4].

The radial dipole matrix elements are big and are of the order of a0n
2. The electric dipole transition

matrix can have huge values of the order of n2qea0, where the atomic unit of the electric dipole moment is

−qea0 = 8.48x10−30C.m [13]. 4.4

Rydberg states are very sensitive to even modest electric fields. Their high sensitivity is due to their large

size and loose binding to the electron core. They are readily polarized and even ionized in relatively weak

electric fields. This property will be looked into further in section 4.2.

4.1 The quantum defect

Despite the shielding of the valence electrons from the electric field of the nucleus, there is a quantum defect,

the cause for which is embedded in the fact that Rydberg atoms do not have circular orbits [1]. The quantum

defect has been determined by spectroscopy, and can be approximated using the formula below:

δn,l,j = δ0 +
δ2

(n− δ0)2
+

δ4
(n− δ0)4

+ ...

and the values of δ0, δ2 and so on are determined experimentally for the atomic species under consideration.

Quantum Defect Theory quantifies the deviations of the core potential of the species considered from that

of the standard hydrogen model. The energy eigenvalues undergo a correction obtained by replacing the

principal quantum number n by an effective quantum number n∗, described as n∗ = n− δn,l,j [1].

Now that the effective quantum number has been defined, various other properties can be expressed based

on the scaling of n∗ as in the table 1.

4.2 Rydberg atoms in an electric field

Rydberg atoms are highly sensitive to electric fields, producing what is called the Stark effect. Ground state

atoms are nearly unaffected by external electric fields, but the Rydberg energy levels are easily perturbed

and even ionized by electric fields. This effect can be better comprehended through the following:

Consider a perturbation due to an applied electric field F along the z axis: V = ezF . Applying pertur-

bation theory to the second order, one can obtain the energy eigenvalues to be approximately

En = E0
n + 〈n(0)|V |n(0)〉+

∑
k 6=n

| 〈n(0)|V |k〉 |2

E0
n − E0

k

.

14



Property n∗-scaling

Binding energy En (n∗)−2

Orbital radius (n∗)2

Level spacing (n∗)−3

Lifetime τ (n∗)3

Ionisation field εion (n∗)−4

Dipole-dipole interaction coefficient C3 (n∗)4

van der Waals interaction coefficient C6 (n∗)11

Polarizability α (n∗)7

Table 1: Some general properties of Rydberg atoms and their scaling laws with respect to the effective

quantum number n∗

For low values of angular momentum, the energy levels are not degenerate, and the quadratic Stark shift

term is the dominant term

∆E =
∑
k 6=n

| 〈n(0)|V |k〉 |2

E0
n − E0

k

=
1

2
αF 2,

where α is the polarizability. Electric polarizability is the tendency of a charge distribution to be distorted

by an external electric field or by an ion or dipole in close proximity. The scaling for α can be obtained from

table 1.

In the case of Rb, the polarizability of the 5S ground state is α = −79.4MHzV 2cm−2, whilst the polariz-

ability of the 43S Rydberg state is α = −17.7MHzV 2cm−2, which shifts this state, at an external field of

1V cm−1, 350 linewidths to the red [4] on the Stark map, where the linewidth of Rb transition 5S → 6P is

approximately 60MHz.

4.3 Electric dipole moment

Due to the large size of the Rydberg atom, the valence electron is separated from the core by a large distance.

This leads to a large electric dipole moment ~µ. They are easily polarized by external electric fields.

The electric dipole moment ~µ of an atom is given by

~µ = −a0e < ~r >,

where a0 is the Bohr radius, −e is the electronic charge and ~r is the separation of the valence electron from

the core, the expectation value of which is 0 for pure angular momentum states.
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4.4 Interactions between Rydberg atoms

Due to their extreme sensitivity, Rydberg atoms readily interact with other Rydberg atoms separated even

by large distances of the order of several µm. They are governed by two types of interactions-Dipole-dipole

interactions and van der Waals interactions. This section ventures into these interactions and also deals

with an interesting feature of Rydberg atoms, namely, the Rydberg blockade. Dipole-dipole interactions are

extremely strong, and will be used later in this study.

4.4.1 Dipole-dipole and van der Waals interactions

Dipole-dipole interactions are interatomic interactions that have a short range and are dependent on the

orientation of the dipoles. van der Waals interactions are interatomic interactions that have a wider range

and are relatively independent of orientation, making them ubiquitous in nature. Consider an electrostatic

dipole with dipole moment µ generating an electric field that can be described as:

~E(~r) =
1

4πε0

3(~n · ~µ)~n− ~µ
R3

,

where ~R = R~n.

The dipole-dipole interaction between two atoms separated by ~R is given by

Vdd =
1

4πε0

~µ1 · ~µ2 − 3(~µ1 · ~n)(~µ2 · ~n)

R3
.

Here, µ1 and µ2 are the electric dipole moments of atoms 1 and 2 respectively. If one were to apply a small

Figure 6: Two dipole-dipole interacting Rydberg atoms placed in a weak electric field ~E.

electric field ~F , a given state |r〉 is coupled only with the state closest in energy to it |r′〉, describing the

Hamiltonian in this case as  Er
~µ1 ~µ2

R3

~µ1 ~µ2

R3 Er + ∆F

 .
Here, Er correspond to the energies of the state |r〉. ∆F is the Förster defect that is the quantifier of the

energy difference between two pairs of states and the value gives the different types of interactions. The

eigenvalues of this Hamiltonian are

E± =
∆F

2
±
√(∆F

2

)2

+
(µ1µ2

R3

)2

.
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Dipole-dipole interactions at resonance: These interactions occur at small distances or at Förster

resonance (∆F = 0). In this case, the dipole-dipole term dominates (µ1µ2

R3 >> ∆F ) and the energy shift is

given by

∆E = ±~C3

R3
.

The scaling for C3 can be obtained from the table 1.

van der Waals interaction: These interactions occur at larger distances (µ1µ2

R3 << ∆F ) and the energy

shift is given by

∆E = ±~C6

R6
.

The scaling for C6 can also be obtained from the table 1.

4.5 Angular dependence of the dipole-dipole interaction

The angular dependence of the dipole-dipole interaction makes it a characteristic of the interaction. This

can be controlled externally in order to vary the strength of the interaction between the two dipoles.

Consider the expression for the dipole-dipole interaction defined earlier:

Vdd =
1

4πε0

~µ1 · ~µ2 − 3(~µ1 · ~n)(~µ2 · ~n)

R3
.

Here, the separation between the two atoms, whose dipole moments are ~µ1 and ~µ2, is given by ~R = R~n.

Also, the dipole moments are given by ~µ1 = e~r1 and ~µ2 = e~r2. The following is the derivation for the angular

dependence of Vdd. For simplicity, we neglect 1
4πε0

in the derivation, as it does not affect the results thus

obtained.

Factoring out e2,

Vdd =
e2

R3
(~r1 · ~r2 − 3(~r1 · ~n)(~r2 · ~n)).

Now, the matrix elements for the interaction are calculated by

〈ψ1| 〈ψ2|Vdd |ψ′2〉 |ψ′1〉 =
e2

R3
〈ψ1| 〈ψ2| (~r1 · ~r2 − 3(~r1 · ~n)(~r2 · ~n)) |ψ′2〉 |ψ′1〉 ,

where |ψ1〉 and |ψ2〉 are the initial states and |ψ′1〉 and |ψ′2〉 are the final states.

Writing the scalar products explicitly,

〈ψ1| 〈ψ2|Vdd |ψ′2〉 |ψ′1〉 =
e2

R3
〈ψ1| 〈ψ2| (x1x2+y1y2+z1z2−3(x1n̂x+y1n̂y+z1n̂z)(x2n̂x+y2n̂y+z2n̂z)) |ψ′2〉 |ψ′1〉 ,

where

n̂x = sin θ cosφx̂,

n̂y = sin θ sinφŷ,

17



and

n̂z = cos θẑ.

We do not consider the radial component here. Substituting the components of ~n into the matrix element

and then averaging over φ, we obtain three types of angular dependence:

f1 = (1− 3 cos2 θ)2,

f2 = 9 sin2 θ cos2 θ,

and

f3 = 9 sin4 θ.

f1 is the angular dependence expected when two dipoles are aligned. This corresponds to a resonant energy

exchange between states, where ∆mj = 0 for both atoms or where ∆mj = ±1 for one atom and ∆mj = ∓1

for the other atom. Here, mj is the z component of the total angular momentum [14].

f2 corresponds to ∆mj = 0 for one atom and ∆mj = ±1 for the other atom and f3 corresponds to ∆mj = ±1

for both atoms [14].

There is the aspect of the alignment of the dipole moments of the atoms with respect to the applied external

field ~F , as shown in figure 7.

Figure 7: a) shows two excited atoms that are separated by a distance R in the presence of an external

electric field ~E with an angle θ between the electric field vector and the dipole moment of an atom ~µ1. b)

shows the dipole moments ~µ1 and ~µ2 in alignment with the direction of the electric field ~E. Figure adapted

from [8].

4.6 The Rydberg blockade

A direct consequence of the strong dipole-dipole interactions is the formation of the Rydberg blockade. The

excitation of a particular atom can be suppressed by a neighbouring atom that has been excited to the
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Rydberg state.

When a laser is shone on a cloud, some atoms are excited to their Rydberg states, which creates a blockade

sphere with radius

rb =
6

√
C6

~Ω
,

where Ω is the Rabi frequency. From 8, we can understand the effect of the Rydberg blockade. When the

Figure 8: The figure is a schematic representation of the dipole blockade. Once an atom is excited to

its Rydberg state, the interactions between the Rydberg atoms cause a shift of the energy levels of the

surrounding ground state atoms within a sphere defined by the radius of influence rb, thus blocking their

excitation. Figure obtained from [8].

applied laser field is resonant with the excitation frequency of a single Rydberg atom, a second Rydberg

atom in the vicinity of the first atom cannot be excited due to a shift in energy, which leaves the second

atom off-resonant with the field.

4.7 Relevance of the Rydberg blockade to quantum gates

Neutral atoms have state dependent interaction properties and weak coupling with field noises, which makes

them essential in the implementation of two-qubit quantum gates [10]. To put it differently, the lack of a

strong Coulomb interaction in neutral atoms leads to much lesser coupling with stray fields than in the case

of ions. However, Rydberg atoms can be used to implement quantum gates by taking advantage of the strong

dipole-dipole interactions that Rydberg atoms possess. From the figure 9, the dependence of the two-particle

interaction strength on the separation R is evident for ions, neutral atoms in the ground state and Rydberg

atoms (Rubidium atoms in the 100s level). From 9, the interaction of Rydberg atoms is governed by van

der Waals forces in the long range and dipole-dipole interactions in the short range. The former is scaled as

1
R6 and the latter as 1

R3 . Two-atom interactions for Rydberg atoms can be switched on and off with a gap
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Figure 9: Two-body interaction strength for Rubidium atoms in the ground state, Rubidium atoms excited

to the 100S level and ions (Coulombic interaction). Figure obtained from [10].

of 12 orders of magnitude, establishing control over a wide range and thus making Rydberg atoms ideal for

quantum computing. The feature of the Rydberg blockade has been proposed as an application to implement

quantum gates in neutral gases [12]. The challenge in the case of quantum gates is to be able to isolate

quantum information from environmental decoherence as well as to allow for strong, controllable interactions

between qubits. In the figure 10, there are two atoms under consideration-the control and the target. If

Figure 10: A phase gate controlled by the Rydberg blockade. The Rydberg blockade controlled phase gate

operates on states |01〉 and |10〉 in a) and b) respectively. Information is stored in the basis states |0〉 and

|1〉. State |1〉 is coupled to the Rydberg level |r〉 with excitation Rabi frequency Ω. The controlled phase

gate is implemented by a three pulse sequence. a) is when the control atom starts at |0〉 and is not excited

to |r〉, so there is no blockade formed. b) is when the control atom is in |1〉, which is excited to |r〉, leading

to the formation of the blockade. Figure obtained from [10].

the control atom is Rydberg excited with a resonant laser pulse, the target atom is excited and becomes
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off-resonant and is thus blocked. The reason for this is the dipole-dipole interactions formed between the two

Rydberg atoms. The figure has a Rydberg blockade controlled phase gate that operates on two input states

|01〉 and |11〉, the former being a) and the latter, b). Information is stored in |0〉 and |1〉. |1〉 is coupled with

the Rydberg level |r〉 with Rabi frequency Ω. A three-pulse sequence regulates the controlled phase gate:

π : |1〉 → |r〉 control (1)

2π : |1〉 → |r〉 → |1〉 target (2)

π : |r〉 → |1〉 control (3)

In a), the control atom is at |0〉 initially, implying that it is not Rydberg excited and preventing the formation

of a blockade. In b), the control atom is at |1〉, which is Rydberg excited, leading to the formation of the

Rydberg blockade. The evolution matrix of the above is a controlled-Z gate, that can be transformed into

a controlled-NOT (CNOT) gate by adding π
2 rotations between |0〉 → |1〉 on the target atom both before

and after interaction. The CNOT gate coupled with single qubit operations, such as the Hadamard gates

and phase gates, form the set of universal gates [9]. Extending the above to ensemble qubits consisting of N

atoms each [11], one can see that the Rydberg blockade can block the excitation of a large number of atoms.

Development of the CNOT gate: A neutral atom can be used to control a NOT gate. An implementa-

tion of the CNOT gate comprises of single qubit rotations using two photon stimulated Raman pulses [19],

a coherent excitation of Rydberg states and the formation of the Rydberg blockade. Consider a system of

two atoms, in which one is the control atom and the other is the target. The excitation and subsequent

de-excitation of the target atom corresponds to a 2π rotation of the effective spin which leads to a phase

shift to the wavefunction of the target. If the control atom and target atom form a blockade such that the

control atom is in the Rydberg level and the target atom is blocked from excitation, then no such rotation

occurs and there is no phase shift of the wavefunction of the target. This is a CZ controlled phase operation.

One can convert the Rydberg blockade to CNOT gates in many ways. It is possible to perform Hadamard

rotations on the target before and after the controlled phase [19], generating an H − Cz CNOT. One can

also implement an AS-CNOT (controlled amplitude SWAP), as shown in the figure 11. In the figure 11 (the

figure on the right), when the control atom is in |0〉, it is excited to its Rydberg level by pulse 1 and thus the

blockade is formed, preventing pulses 2, 4 and 6 from having any effect on the target atom. Pulse 7 returns

the atom to |0〉. In the figure on the left, in which the control atom is at |1〉, pulses 1 and 7 are detuned,

and pulses 2 − 6 swap the amplitudes of |1〉 and |0〉. On the right, when the control is at |0〉, the switch is

turned off and on the left, the switch is turned on, causing the NOT operation to occur.

Figure 12 provides a schematic for the CNOT gate, which can be realized experimentally.
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Figure 11: CNOT gates with Hadamard rotations. The pulses are all π pulses unless mentioned otherwise.

When the control atom is in |0〉, as in the figure on the right, it is excited to its Rydberg level by pulse 1

and thus the blockade is formed, preventing pulses 2, 4 and 6 from having any effect on the target atom.

Pulse 7 returns the atom to |0〉. In the figure on the left, in which the control atom is at |1〉, pulses 1 and 7

are detuned, and pulses 2 − 6 swap the amplitudes of |1〉 and |0〉. On the right, when the control is at |0〉,

the switch is turned off and on the left, when the control is at |1〉, the switch is turned on. Figure obtained

from [19].

Figure 12: An atomic ensemble in its quantum state, manipulated by a single control atom and the Rydberg

interaction. Figure obtained from [24].

5 Results and discussions

5.1 System of two Rydberg atoms

The ~µ · ~E interaction between a light field and an atom can be treated to be the same all over the atom due to

the minute size of the electron compared to the wavelength of the field. Here, ~µ is the electric dipole moment

and ~E is the electric field. ~µ ∝ r̂, as the size of the electric dipole is distance times charge. An approximation

is made that the electric field is monochromatic and a plane wave. A description of the electric field can be
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given as below:

~E(r) = i~εE0[aei
~k~r − a†e−i~k~r].

Here, k = ω
c is the wavenumber, E0 is the field strength, r is the position of the desired field, ~ε is the polar-

ization and a and a† are the creation and annihilation operators for photons in the mode. The Hamiltonian

for the evolution of the field is

Hfield = ~ωa†a,

which is consistent with the notion that the energy is the volume integral of | ~E|2 in the cavity.

The two-level atom approximation can be employed here because we are only dealing with monochromatic

light and only relevant energy levels that satisfy the two following conditions:

� The energy difference of the energy levels matches the energy of the incident photons, and

� Selection rules do not inhibit transitions.

From energy conservation,

~ω = E2 − E1,

where E1 and E2 are the two eigenenergies of the atom. Conservation of angular momentum and parity are

accounted for by considering the matrix elements of r̂ between two orbital wavefunctions 〈l1,m1| r̂ |l2,m2〉.

One can take r̂ in the x̂− ŷ plane and express it in spherical harmonics

r̂ =

√
3

8π
[(−rx + iry)Y1,+1 + (rx + iry)Y1,−1].

Here, l1, l2, m1 and m2 are the quantum numbers, |m| 6 l. Yl,m are the spherical harmonics.

The relevant terms in 〈l,m1| r̂ |l,m2〉 in this basis are∫
Y ∗l,m1

Y1,mYlz,mz
dΩ.

Applying selection rules, the above integral is non-zero only when m2 −m1 = ±1 and ∆l = ±1. Under the

dipole approximation, where 〈l1,m1| r̂ |l2,m2〉 becomes relevant, the former condition is the conservation of

angular momentum and the latter, conservation of parity. The reason for the use of this approximation is

the simplicity it offers. If |ψ1〉 and |ψ2〉 are two levels, then the matrix elements of r̂ are

rij = 〈ψi| r̂ |ψj〉 ≈ r0Y,

where r0 is a constant and Y is a Pauli operator. The Hamiltonian of the atom in this two-level subspace is

Hatom =
~ω0

2
Z,
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where ~ω0 is the energy difference between the two levels as they are both energy eigenstates. Using the

quantum mechanical approximation of the electric field with creation and annihilation operators, and the

matrix elements of r̂ in the two-level approximation, the interaction Hamiltonian is

HI = −igY (a− a†).

We have chosen r = 0 to place the atom and orient it in such a way that r̂ is aligned with ~E. g is a constant

that describes the strength of the interaction. HI is Hermitian and can be simplified using the Pauli raising

and lowering operators below

σ± =
1

2
(X ± iY ).

HI is then given as

HI = g(σ+ − σ−)(a− a†).

The cross-terms with σ+a
† and σ−a oscillate at twice the values of ω and ω0, and can hence be dropped by

the rotating wave approximation. The total Hamiltonian is

H =
~ω0

2
Z + ~ωa†a+ g(a†σ− + aσ+),

which is H = Hatom +Hfield +HI . ω is the frequency of the field and ω0 is the frequency of the atom. g is

the coupling constant for the interaction between the field and the atom. Using N = a†a + Z
2 and the fact

that [H,N ] = 0, where N is the constant of motion, the Hamiltonian can be rewritten as

H = ~ωN + δZ + g(a†σ− + aσ+),

where δ is the detuning given by

δ =
ω0 − ω

2
.

Now we shall delve into Rabi oscillations, that are a characteristic of field-atom systems.

Rabi oscillations of a system: Consider two identical Rydberg atoms A and B. First, we examined the

results of shining a laser of frequency Ω on one of the atoms, say A. The same result was obtained when the

laser was shone on B. The Hamiltonian for a single atom on which a laser is shone is

H = −


δ 0 0

0 δ g

0 g −δ

 .
Here, g is the coupling constant and δ is the detuning, i.e., the frequency difference between the field and

atomic resonance.The basis states are |00〉 , |01〉 , |10〉. The time evolution is given by the unitary operator

U = e−iHt.
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N can be neglected as it contributes a fixed phase only, and ~ is dropped for convenience. Using the above,

we can determine that

U = e−iδt |00〉 〈00|+(cos Ωt+i
δ

Ω
sin Ωt) |01〉 〈01|+cos Ωt−i δ

Ω
sin Ωt) |10〉 〈10|−i g

Ω
sin Ωt(|01〉 〈10|+|10〉 〈01|).

The fourth term gives that the field and the atom oscillate, exchanging energy at the Rabi frequency

Ω =
√
g2 + δ2.

Coming back to our system, the laser was first shone on one atom and then on the other separately. Then,

the laser was shone on the system. As the two atoms in consideration are Rydberg atoms, they will interact

with each other with the dipole-dipole interaction described previously 4.4. The construction of the system

is as in figure 13. When the laser is shone on one atom, we obtain Rabi oscillations that look like in figure

Figure 13: This is a system of two Rydberg atoms A and B that interact with Vdd between them. A laser

of frequency Ω is shone on both A and B.

14. The figure was obtained by considering the Hamiltonian for a single atom irradiated by a laser.

When the system is irradiated by two lasers, the above can be divided into two cases, based on the strength of

the dipole-dipole interactions: weak interactions and strong interactions. Consider the following Hamiltonian

for the system of two atoms, A and B:

H =
~Ω

2
(|0〉 〈1|+ |1〉 〈0|)⊗1B−~∆(σz

A⊗1B)+
~Ω

2
1A⊗(|0〉 〈1|+ |1〉 〈0|)−~∆(1A⊗σzB)+Vdd |1〉 〈1|⊗|1〉 〈1| .

Here, Ω is the Rabi frequency, 1 represents the identity matrix, ∆σz is the detuning and Vdd is the dipole-

dipole potential. The Hamiltonian for this system was obtained by

H = HA +HB +Hinteraction,
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Figure 14: Rabi oscillations obtained for a single atom in a system of two Rydberg atoms. The laser is shone

only on one atom. Note that the time has been made dimensionless. The blue graph depicts the oscillation

of the ground state, and the red graph depicts the oscillation of the excited state. Time is given by x = ωt.

where HA is the Hamiltonian for A, HB is the Hamiltonian for B and Hinteraction is obtained by evaluating

the dipole-dipole interaction. Consider atom A in this system.

HA = E0 |0〉 〈0|+ E1 |1〉 〈1| ,

where E0 and E1 are the energy eigenvalues such that E1−E0 = δ and E1 +E0 = S. Therefore, 2E1 = δ+S

and 2E0 = S − δ. Substituting for E1 and E0 in HA,

HA =
S − δ

2
|0〉 〈0|+ S + δ

2
|1〉 〈1| ,

which can be simplified to

HA =
S

2
(|0〉 〈0|+ |1〉 〈1|)− δ

2
(|0〉 〈0| − |1〉 〈1|),

which is,

HA =
S

2
1− δ

2
σz,
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where 1 is the identity matrix, defined as |0〉 〈0|+ |1〉 〈1| and σz is the Pauli Z matrix, given by |0〉 〈0|−|1〉 〈1|.

The same calculation can be repeated for atom B.

The interaction Hamiltonian, as mentioned earlier, is obtained from the dipole-dipole interaction between A

and B. The dipole-dipole interaction can be described as

Vdd =
1

4πε0

~µ1 · ~µ2 − 3(~µ1 · ~n)(~µ2 · ~n)

R3
,

where ε0 is the permittivity of free space, ~µ1 is the dipole moment of A, ~µ2 is the dipole moment of B and

the interaction between two atoms in an applied electric field separated by a distance R is measured along ~n.

The matrix of Vdd in the basis |gg〉 , |gr〉 , |rg〉 , |rr〉, where the first term gives the state ofA and the second

of B, is as follows:

Vdd =


0 δ δ d1d2

δ 0 δ d1µ2

δ δ 0 µ1d2

d1d2 d1µ2 µ1d2 µ1µ2

 .

However, the value of δ is very small. Terms dLdR, dLµR, µLdR are extremely small and are also neglected.

The only term that remains in Vdd is the one obtained by 〈rr|Vdd |rr〉. Therefore,

Vdd =


0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 µ1µ2

 .

In order to plot the graphs, some dimensionless parameters were introduced.

Ω

ω
= e,

∆

ω
= d,

and
Vdd
~ω

= v.

This made the Hamiltonian purely numerical.

So where exactly does ω come from? We consider the Hamiltonian

H =
~Ω

2
(|0〉 〈1|+ |1〉 〈0|)⊗1B−~∆(σz

A⊗1B)+
~Ω

2
1A⊗(|0〉 〈1|+ |1〉 〈0|)−~∆(1A⊗σzB)+Vdd |1〉 〈1|⊗|1〉 〈1| ,

which can be rewritten using the Pauli matrices as

H =
~Ω

2
(σAx ⊗ 1B)− ~∆(σz

A ⊗ 1B) +
~Ω

2
(1A ⊗ σBx )− ~∆(1A ⊗ σzB) + Vdd |1〉 〈1| ⊗ |1〉 〈1| .
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We then factor out ~ and multiply and divide by ω, which has the same dimensions as Ω.

H = ~ω
(

1

2

Ω

ω
(σAx ⊗ 1B)− ∆

ω
(σz

A ⊗ 1B) +
1

2

Ω

ω
(1A ⊗ σBx )− ∆

ω
(1A ⊗ σzB) +

Vdd
~ω
|1〉 〈1| ⊗ |1〉 〈1|

)
.

This can be written as

H = ~ωH0,

where

H0 =
1

2

Ω

ω
(σAx ⊗ 1B)− ∆

ω
(σz

A ⊗ 1B) +
1

2

Ω

ω
(1A ⊗ σBx )− ∆

ω
(1A ⊗ σzB) +

Vdd
~ω
|1〉 〈1| ⊗ |1〉 〈1| .

In order to evolve the state with respect to time, a numerical approximation was considered like so

|ψ(t)〉 = e−
iHt
~ |ψ(0)〉 ,

which, when approximated, becomes

|ψ(t)〉 = lim
n→∞

(
1− iH∆t

~

)n
|ψ(0)〉 ,

where ∆t = t
n . Also,

e−
iHt
~ = e−

iH0~ωt
~ = e−iH0ωt = e−iH0x,

where x = ωt.

The initial state is

|ψ(0)〉 = |00〉 = |0〉 ⊗ |0〉 =

 1

0

⊗
 1

0

 ,
thus giving

|ψ(0)〉 =


1

0

0

0

 .

When the laser is shone on the system, there are two cases for Vdd: strong interactions and weak interactions.

For strong interactions, the ratio of Vdd to Ω is

Vdd
Ω

>> 1,

and for weak Vdd,
Vdd
Ω

<< 1,
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where Ω is the Rabi frequency.

In the case of strong Vdd, we obtain an oscillation of the state below:

|ψ+〉 =
1√
2

(|01〉+ |10〉),

where the first term gives the state of A and the second of B. The frequency of oscillation in this case is

given by
√

2Ω.

In the case of weak Vdd, the oscillations obtained are very slow. To illustrate this, we plot a negativity versus

time graph. This is an indicator of the time taken to achieve maximum entanglement for both strong and

weak dipole-dipole interactions.

Negativity: The non-separability of states is given by negative eigenvalues of the matrix obtained by

the partial transposition of the density matrix. The absolute value of the negative values is a measure of

entanglement for general states and is known as negativity [5]. The maximum possible value of negativity is

0.5. It is defined as

NA−B =
||ρTA ||1 − 1

2
,

where ||ρTA ||1 is the trace norm of the density matrix, calculated after a partial transposition with respect

to A.

The trace norm of ||ρ||1 of a matrix ρ is the sum of the singular values of ρ, given by the roots of the

eigenvalues of ρρ†. Therefore,

||ρ||1 = Tr
√
ρρ†.

From the figure 15, for strong Vdd, maximum entanglement is reached at ≈ 2.2 × 103 unit time. From

the figure 16, for weak Vdd, maximum entanglement is reached at ≈ 6.2× 104 unit time. From this, we can

conclude that, in the case of weak interactions, entanglement grows much slower and maximum entanglement

is attained much later than in the case of strong interactions. The ratio of the time to achieve maximum

entanglement in the case of weak Vdd over strong Vdd is approximately 10 : 1.

In figure 15, upon close observation, one can notice that the graph does not touch zero. This is because of

an imperfect blockade. Also, in figure 16, a wiggle is observed in the oscillation. This wiggle is actually the

graph of negativity for the strong Vdd tilted and ’fitted’ along the graph of negativity for weak Vdd.

In the instances in which probability was calculated, the following method was used: The density matrix

of a given state |ψ+〉 is given by

P (|ψ+〉) = |ψ+〉 〈ψ+| ,

This implies that, if we were to obtain the probability of finding a particle in the state φ, we calculate the

integral 〈φ| ρ |φ〉. The trace of ρ is normalized to 1 and the trace of ρ2 is 1 for pure states and < 1 for mixed

states.
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Figure 15: Negativity versus time graph in the case of strong Vdd between A and B. Time is given by x,

where x = ωt.

Say we have the following state:

|ψ〉 =
1

8
|00〉+

1

4
|01〉+

3

8
|10〉+

1

4
|11〉 .

We must calculate the probability of |00〉. We can determine this by

〈00| ρ |00〉 = 〈00|
(

1

8
|00〉 〈00|+ 1

4
|01〉 〈01|+ 3

8
|10〉 〈10|+ 1

4
|11〉 〈11|

)
|00〉 .

Due to the orthonormality of the basis vectors,

〈00| ρ |00〉 = 〈00|
(

1

8
|00〉 〈00|

)
|00〉 ,

which gives

〈00| ρ |00〉 =
1

8
.

5.2 System of three Rydberg atoms

Consider three Rydberg atoms A, B and C such that A and B are entangled, and atom C acts as a probe,

which detects A−B. C interacts only with A. A laser was shone on C alone and the interaction between A

and C was examined. We recorded graphs for strong and weak Vdd between A and C for C. We start with

A−B in state

|ψ〉 =
1

2
(|01〉+ |10〉),
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Figure 16: Negativity versus time graph in the case of weak Vdd between A and B. Time is given by x,

where x = ωt.

and C in state |0〉.

After A and C have interacted, we separate A and B far apart to study the interaction between A and C.

If the interaction between them is weak, we obtain Rabi oscillations for C, as in figure 17. If the interaction

between them is strong, we obtain the figure 18.

The state of C, in the case of strong Vdd, evolves from |0〉 to

|ψ〉 = osc |C〉 1√
2
|01〉+ noosc |C〉 1√

2
|10〉 ,

where osc implies oscillation and noosc implies no oscillation.

To obtain the graphs 17 and 18, the following calculations were made:

In the case of weak Vdd,

P (|0〉) = cos2 Ωt

2
,

P (|1〉) = sin2 Ωt

2
.

This gives Rabi oscillations as in figure 17.

In the case of strong Vdd,

ρABC = |ψ〉 〈ψ| ,
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Figure 17: Rabi oscillations for C in a system in which an entangled system A − B interacts with a probe

C. A and B are separated and the interaction between A and C was studied. The above is the result for

weak Vdd interaction between A and C. Time is given by x = ωt. The blue graph depicts the oscillation of

the ground state, and the red graph depicts the oscillation of the excited state.

where ρABC is the density matrix. The state |ψ〉 is

|ψ〉 =
1√
2

(
cos

Ωt

2
|0〉+ sin

Ωt

2
|1〉
)
.

The probabilities thus obtained are

P (|0〉) = tr(|0〉 〈0| ρA) =
1

2

(
cos2 Ωt

2
+ 1

)
,

and

P (|1〉) = tr(|1〉 〈1| ρA) =
1

2

(
sin2 Ωt

2

)
,

where ρA = trBC(ρABC). This gives the result obtained in figure 18.

We will compare the probabilities obtained above in a special case, in which Ωt
2 = π

2 . In the case of weak

Vdd,

P (|0〉) = cos2 Ωt

2
= 0,
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Figure 18: The above is the result for strong Vdd interaction between A and C. Time is given by x = ωt.

The blue graph depicts the oscillation of the ground state, and the red graph depicts the oscillation of the

excited state.

P (|1〉) = sin2 Ωt

2
= 1,

and, in the case of strong Vdd,

P (|0〉) = tr(|0〉 〈0| ρA) =
1

2

(
cos2 Ωt

2
+ 1

)
=

1

2
,

and

P (|1〉) = tr(|1〉 〈1| ρA) =
1

2

(
sin2 Ωt

2

)
=

1

2
.

From the above, we can conclude that measurements destroy entanglement.

5.3 Development of the controlled-SWAP gate

Consider three atoms A, B and C. C is the control atom, based on which the SWAP operation takes place

between A and B. When the truth value of C is 0, the SWAP operation does not take place. When the
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truth value of C is 1, the SWAP operation occurs and A and B switch values. The truth table for this

operation for all 8 possible combinations is given in table 2. The operation that this gate performs can be

A B C A′ B′ C ′

0 0 0 0 0 0

1 0 0 1 0 0

0 1 0 0 1 0

1 1 0 1 1 0

0 0 1 0 0 1

1 0 1 0 1 1

0 1 1 1 0 1

1 1 1 1 1 1

Table 2: Truth table for the controlled-SWAP gate without the Rydberg blockade.

A B C A′ B′ C ′

0 0 0 0 0 0

1 0 0 0 1 0

0 1 0 1 0 0

1 1 0 1 1 0

0 0 1 0 0 1

1 0 1 1 0 1

0 1 1 0 1 1

1 1 1 1 1 1

Table 3: Truth table for the controlled-SWAP gate with the Rydberg blockade.

summarized as follows:

1. |ψ〉A |φ〉B |0〉C → |ψ〉A |φ〉B |0〉C

2. |ψ〉A |φ〉B |1〉C → |φ〉A |ψ〉B |1〉C

However, if we were to use the Rydberg blockade, the operation that the gate performs is modified as shown

below:

1. |ψ〉A |φ〉B |1〉C → |ψ〉A |φ〉B |1〉C
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Figure 19: Circuit representation for the controlled-SWAP gate. A, B and C are the inputs, where C is the

control atom and A and B are to be swapped.

2. |ψ〉A |φ〉B |0〉C → |φ〉A |ψ〉B |0〉C

The behaviour of the gate is reversed from the general gate in the case of the utilization of the Rydberg

blockade.

Construction: This gate can be constructed with Rydberg atoms due to the strong dipole-dipole interac-

tions and the subsequent formation of the Rydberg blockade. The atom C plays the role of a switch, with

two possible states, 0 and 1. When C is at |1〉, the SWAP operation does not take place due to the formation

of the Rydberg blockade. When C is at |0〉, the Rydberg blockade is not formed and the SWAP operation

occurs between A and B.
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6 Conclusions and future work

Rydberg atoms, due to their large size, readily interact with other Rydberg atoms even when the separation

between them is relatively large. This property of these neutral atoms is used to generate entanglement

between them. The strong dipole-dipole interactions between Rydberg atoms lead to the formation of the

Rydberg blockade. The blockade is realized by a shift in the energy level of the second atom in the field of

the first atom and prevents the excitation of the former. This property makes Rydberg atoms a valuable

tool for quantum computation, where they can act as switches.

We calculated Rabi oscillations in the case of a single atom in a system of two Rydberg atoms being

irradiated by a laser. We also obtained Rabi oscillations in a system of three Rydberg atoms, in which one

was the probe and the other two interacted through the dipole-dipole interaction. We concluded that the

gain in entanglement and the attainment of maximum entanglement in a system is governed by the strength

of the interactions between the two atoms. We finally constructed the controlled-SWAP gate, which performs

the SWAP operation when the control atom is in the state |0〉, in which no blockade is formed.

As for the future work, one could place a system of two Rydberg atoms in a photon field and examine

the atomic entanglement thus obtained. We predict that placing such a system in a microwave cavity will

accelerate the growth of entanglement and it would peak faster. This is pertinent due to environmental

decoherence, or reduction in superposition, after two Rabi oscillations.
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