
LIMITS OF CLASSICAL WORLD WITH
FINITE INFORMATION

SUBMITTED

BY

RAY FELLIX GANARDI

DIVISION OF PHYSICS AND APPLIED PHYSICS

SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES

A final year project report

presented to

Nanyang Technological University

in partial fulfillment of the

requirements for the

Bachelor of Science (Hons) in Physics

Nanyang Technological University

June 2015



ABSTRACT

Computer simulations are getting more and more common in physics. Here we examine

the underlying assumption that Nature can be simulated with classical bits. We first pos-

tulate that every physical object can be encoded into a finite number of classical bits. We

allow the bits to have an unknown but fixed probability distribution. The second postulate

is that measurements can be computed as deterministic functions on these bits. It is shown

that we can model exponentially many measurements with n bits. We also derive the min-

imum precision that one needs in order to disprove this model in an experiment. Finally,

imposing quantum mechanical restrictions on measurement devices we show that disproving

the classical models with only about 100 bits is already practically impossible.
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I. INTRODUCTION

It is known that quantum mechanics gives only statistical predictions. The early fore-

fathers of quantum mechanics thought that the statistical nature of quantum mechanics

stems from some ignorance of some hidden variables (HV), and ultimately the results can

be explained classically [1]. One of the more famous and successful HV model is the de

Broglie-Bohm theory, also known as the pilot wave theory [2, 3]. However, in 1964, Bell

showed that no local hidden variable theory can explain all quantum mechanical predictions

[4] if we have at least two particles.

More recently, there are attempts to study the correspondence between HV models and

quantum mechanics, by creating HV models of quantum systems [5]. Hardy showed that we

need infinitely many HV states to model infinitely many measurements on one qubit [6, 7]

(see also the paper by Montina [8]). In this work, we will show how much resources we need

to model one qubit with a finite number of measurements. In the limit of infinitely many

measurement settings, our results agree with Hardy’s [6].

We are investigating a model in which the universe is modeled with a finite number of

classical bits. If it is, it should be possible to model quantum mechanical behavior with

classical bits. The model that we are investigating is based on the following assumptions

(see Figure 1):

1. There is a finite amount of classical information in every volume. We assume that

this classical information is encoded in a finite number of classical bits r. We allow

the bits to have an unknown, but fixed probability distribution pr ∈ [0, 1],
∑

r pr = 1.

Therefore all physical objects carry a finite number of classical bits.

2. Measurement outcomes are Boolean functions of bits contained in the input, i.e. m =

f(r, s), where s denotes the setting of our measuring device. We assume the functions

are deterministic, i.e. given the same input bits and setting, the measurement should

return the same output. For simplicity we will assume m ∈ {0, 1}.

We assume that the functions are deterministic, since if they are allowed to be non-

deterministic, we can easily reproduce quantum predictions. As an example, suppose we

want to explain an expectation value m. If we allow the functions to be non-deterministic,

then in principle there is a function f(r) that returns 1 with probability m and returns
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FIG. 1. An illustration of the model. Any volume in space with finite energy can be characterized

by some bits r. A measurement will be some deterministic function f(r, s) on the bits carrying the

information contained in the physical system, where s is the setting of our measurement device.

0 with probability 1 − m, independent of the input bit r. Thus we can recover quantum

mechanical predictions quite trivially.

For simplicity, we will reduce the question of the validity of the model to the following

problem.

Problem 1. Given a set of expectation values mi, find a probability distribution of the bits

pr ∈ [0, 1] and the functions on those bits fi(r) ∈ {0, 1} such that f i =
∑

r prfi(r) = mi.

Intuitively, this means the following. Suppose we have some setup with a source that

can be characterized by n bits and a measuring device. By performing the experiment

with different measurement settings i, we will measure a list of expectation values {mi}.

Now, suppose this setup can be described by a model introduced above. Then there exists

pr ∈ [0, 1] and fi(r) ∈ {0, 1} such that f i(r) =
∑

r prfi(r) = mi. This is precisely the

statement in Problem 1.

In the following section, we will explore the simplest case when our system can be de-

scribed by one bit. In addition to the solution to this problem, we will also investigate

another related question, what will happen if we allow uncertainties in our measurements

(see Problem 2).

In view of Bell’s inequality [4], we would expect local hidden variable models to be unable

to model quantum mechanics if we have at least two particles. We will show that if the HV

model has a finite number of states, we cannot even fully model a one qubit system. Our

results show that to model one particle, the HV model has to carry infinite amount of

information, e.g. using continuous variables [2, 3].

We will show that the number of explainable measurements grows exponentially with

the number of bits in the model (see Theorem 2). We will also deduce that the maximum
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tolerable error to disprove an n bits model decreases exponentially with n (see Theorem 4).

Finally, we will show that by imposing quantum mechanical restrictions, disproving classical

models with about 100 bits is practically impossible (see Equation (15)).

II. PRELIMINARY DISCUSSIONS

The reason that we are interested in this class of models is because our intuition tells us

that quantum systems will not admit any classical model. This is based on the well known

Bell’s inequality [4]. In this section we will formalize this intuition and show that indeed

there is a quantum system (in this case one qubit) that does not admit a classical model

described in the previous section. We will also explore related questions such as what would

happen if we allow our measurements to have errors.

First we note that if we only have one measurement m on one qubit, we can always

explain the expectation value with one bit by simply tweaking p0, p1 so that p1 = m, and

assigning the function f(r) = r so that f(r) =
∑

r f(r) pr = m. Thus the scenario becomes

interesting when we have at least two measurements.

Theorem 1. There is no one bit model that can explain one qubit with two arbitrary mea-

surements.

Proof. Suppose we have a qubit in the state |ψ〉 = α |0〉 + β |1〉. Define the family of

projectors

Pθ = 1 |+, θ〉 〈+, θ|+ 0 |−, θ〉 〈−, θ| ,

where

|+, θ〉 = cos θ |0〉+ sin θ |1〉

|−, θ〉 = −sin θ |0〉+ cos θ |1〉 .

We can easily check that Pθ returns 0 if the system is in the state |−, θ〉, and returns 1 if

the system is in the state |+, θ〉. The expectation value of Pθ is then

〈Pθ〉ψ = |α|2 cos2 θ + |β|2 sin2 θ + cos θ sin θ (α∗β + αβ∗).

It is not easy to see that 〈Pθ〉ψ ∈ [0, 1]. For simplicity, let us prepare our qubit in the

state |ψ〉 = |0〉. Then, 〈Pθ〉ψ = cos2 θ. Suppose we perform measurements m1 = Pπ
4

and

m2 = Pπ
6
. It is easy to check that 〈m1〉ψ = 1

2
, and 〈m2〉ψ = 3

4
.

9



r f1(r) f2(r) f3(r) f4(r)

0 0 0 1 1

1 0 1 0 1

TABLE I. All Boolean functions on one bit are shown.

Now suppose the qubit can be modeled by one bit with some probability distribution.

Naturally, we expect that no one bit model will be able to explain the two expectation values

that we measured earlier. Let us formalize this intuition.

Let the probability of the bit being in state 0 (1) to be p0 (p1). The four Boolean functions

on one bit are listed in Table I.

Suppose we have two measurements m1,m2. By assigning m1,m2 to different functions in

the Table I and calculating their expectation values, we get every possible two measurement

statistics that a one bit model would explain. Plotting the expectation values for every

assignment, m1 = fi, m2 = fj, with i, j ∈ {1, 2, 3, 4}, we get Figure 2. Note that the point

m1 = 1
2
,m2 = 3

4
is not in the set of points explainable by the one bit classical model, whereas

as shown earlier we can easily prescribe a qubit model that can explain these numbers. Since

we have considered all the possible two measurements statistics a one bit model can have,

we conclude that there is no one bit model that can model one qubit with two arbitrary

measurements.

We can justify this result by the following argument. Suppose we make a graph with

different components of the probability vector ~p as the axes (see Figure 3). The requirement

that probabilities have to be non-negative restricts the possible probability distributions to

the positive quadrant where pi ≥ 0. The requirement that they have to sum up to unity

puts another restriction that is equivalent to stating that the possible distributions have to

lie on a plane, defined by ~p · ( 1
1 ) = 1. If we want ~p to explain both m1 and m2, this is

equivalent to saying that ~p has to lie in planes defined by ~p · ~f1 =
∑

r prf1(r) = m1 and

~p · ~f2 =
∑

r prf2(r) = m2, where ~f1 (~f2) is the vector representing the function f1 (f2). As

we can see in Figure 3, there is no point that lies on the blue, red, and green line. Therefore

no one bit model can explain the expectation values m1 = 1
2
, m2 = 3

4
.

It is interesting to ask what is the most non-classical measurement that we can perform.

We will define this as the point that is the farthest from the set of explainable points. Since a
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FIG. 2. All possible expectation values of two measurements explainable by a one bit model are

shown in blue. The shaded area represents the possible expectation values of two measurements

explainable by a one qubit model. See Problem 1.

FIG. 3. The visual proof of Theorem 1 is drawn. The blue line represents the restriction arising

from normalization, while the green (red) lines represent the restriction arising from the expectation

value m1 = 1
2 (m2 = 3

4). The probability distribution that explains m1 (m2) are marked with green

(red) dots.

qubit system can explain any measurement that lies inside the box m1,m2 ∈ [0, 1], the most

non-classical point then is the center of the largest circle that can fit inside the structure

(see Figure 4). Elementary calculations show that one of the largest circles is centered at

(1
2
, 1
2(1+

√
2)

), and the radius of the circle is 1
2(1+

√
2)

.

Now that we have shown that no one bit model can model one qubit with two arbitrary
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FIG. 4. The largest circle that fits inside the structure is shown. The center of the circle m1 =

1
2 ,m2 = 1

2(1+
√
2)

is shown as a dot. All possible expectation values of two measurements explainable

by one bit are shown in blue.

measurements, one might ask if introducing error will change this result. By introducing

errors, we have to rephrase the problem into the following.

Problem 2. If we allow our measurements to have an uncertainty ∆m, what is the maximum

∆m that we can tolerate such that we can disprove any n bit model?

To make sense of the statement above, first we need to define circumstances under which

we call the fuzzy measurement explainable by the classical model. If a single point explain-

able by the classical model is within one standard deviation ∆m away from the expectation

value mi, we say that expectation value mi can be explained. For example, suppose we

measured m = 0.5 and the uncertainty is ∆m = 0.1. We will say that m is explainable if

there is point in the interval [0.4, 0.6] that can be explained by the classical model. Thus ex-

pectation values within the error bars might be explainable by the classical model although

the actual mean of the measurement cannot be explained.

Since we have drawn all the possible statistics of two measurements on one bit (see

Figure 2), and recalling that a qubit system can explain any measurement that lies inside

the box m1,m2 ∈ [0, 1], solving Problem 2 is equivalent to drawing the largest box inside the

structure (see Figure 5). Elementary calculations will show that the maximum error that

we can tolerate is ∆mmax = 1
6
, centered at m1 = 1

2
and m2 = 1

6
.

It is interesting to contrast the most non-classical measurement (m1 = 1
2
,m2 = 1

2(1+
√
2)

)
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FIG. 5. The largest box that fits inside the structure is shown. All possible expectation values of

two measurements explainable by one bit are shown in blue. The measurement that will disprove

any one bit model with the largest allowance in uncertainty (m1 = 1
2 ,m2 = 1

6) is indicated by the

green dot. See Problem 2.

to the measurement where we can have the largest allowable error (m1 = 1
2
,m2 = 1

6
). Both

of these questions are equivalent to drawing some maximal structure within the boundaries

of the model. However for the box we have a clear interpretation that the sides of the box

represent the uncertainty of the measurement. By that, we mean the actual expectation

value of the system is in the interval [m − ∆m,m + ∆m] with uniform probability (see

Figure 6, in green). One might suggest a similar interpretation for the circle by using a

Gaussian model of error (i.e. the probability density of the actual expectation value of the

system is distributed according to a Gaussian around m with standard deviation ∆m, see

Figure 6, in blue).

Now that we have solved Problem 1 and 2 for one bit, we can ask the effect of having

more bits in our model.

III. GENERALIZATIONS

Since we know that we cannot model two arbitrary measurements with one bit, we might

ask the question, what is the maximum number of arbitrary measurements that one can

explain using n bits? We know that we can model one arbitrary measurement with a single

bit, thus it is easy to see that we can easily model n arbitrary measurements with n bits.
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FIG. 6. An illustration of a Gaussian model of error (blue) and box model of error (green). ∆m is

illustrated for both model. ρ(m)dm is the likelihood that the outcome is between m and m+ dm.

r f1(r) f2(r) f3(r) f4(r) f5(r) f6(r) f7(r) f8(r) f9(r) f10(r) f11(r) f12(r) f13(r) f14(r) f15(r) f16(r)

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

TABLE II. All Boolean functions on two bits are shown.

We can explain mi by bit i. However, parameter counting suggest that one can perform

2n − 1 arbitrary measurements. Thus in the following sections we will try to model 2n − 1

arbitrary measurements with n bits.

A. The naive way

Following the same strategy as the previous section, we can list all Boolean functions on

two bits (see Table II). We know that we can always model any two measurements with

two bits. Thus we need to consider three measurements. Seeing that there are 222 = 16

functions on two bits and
(
22

2

3

)
= 560 possibilities of choosing three measurements, we see

that an exhaustive search is doomed to fail. Thus we need to develop some tools to tackle

this problem.

Let us write down the equations that we have to solve.
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p1 + p2 + . . . + p4 = 1

p1f1(1) + p2f1(2) + . . .+ p4f1(4)= m1

p1f2(1) + p2f2(2) + . . .+ p4f2(4)= m2

p1f3(1) + p2f3(2) + . . .+ p4f3(4)= m3, (1)

with fi(r) ∈ {0, 1}, and pi ∈ [0, 1]. Note fi(r) in equation (1) can be different from fi(r) in

Table II. Let us define

M =


1

m1

m2

m3

 , P =


p1

p2
...

p4

 , and F =


1 1 1 1

f1(1) f1(2) f1(3) f1(4)

f2(1) f2(2) f2(3) f2(4)

f3(1) f3(2) f3(3) f3(4)

 , (2)

so we can write equations (1) as FP = M . It is easy to see that if we assign appropriate

functions fi(r) to the expectation values, we can calculate the probabilities by calculating

P = F−1M .

The astute reader will notice the flaws in this approach. There is no guarantee that

F−1 exists, or even if it does exist, there is no guarantee that F−1M is a valid probability

distribution (the vector F−1M might have a negative component). We can refute the first

argument by noting that the functions in Table II form a vector space over Z2. By assigning

linearly independent functions to fi(r), we can ensure that det(F ) 6= 0 =⇒ F−1 exists.

Since we want linearly independent functions as fi(r), the natural first guess for F in

equation (2) would be

Fguess1 =


1 1 1 1

1 0 1 0

1 1 0 0

1 0 0 1

 . (3)

This would imply that

P = F−1M

=
1

2


−1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




1

m1

m2

m3

 .

15



However this will not explain any three expectation values since setting m1 = m2 = m3 = 0

will imply that P =


−1
2
1
2
1
2
1
2

, which is not a valid probability distribution. Thus we can only

do the assignment in equation (3) if and only if

−1 +m1 +m2 +m3 ≥ 0 (4a)

1−m1 +m2 −m3 ≥ 0 (4b)

1 +m1 −m2 −m3 ≥ 0 (4c)

1−m1 −m2 +m3 ≥ 0. (4d)

Since our first guess has proved to be limited, we might ask is there any assignment of

functions fi(r) that will satisfy our requirements? Let us try another assignment

Fguess2 =


1 1 1 1

0 1 0 0

0 0 1 0

0 0 0 1

 . (5)

This would imply that

P = F−1M

=


−1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1




1

m1

m2

m3

 .

Again we arrive at the same problem. This time, setting m1 = m2 = m3 = 1 will make

P =

(
−2
1
1
1

)
. The inequalities that we have to satisfy for the assignment in equation (5) are

1−m1 −m2 −m3 ≥ 0 (6a)

m1 ≥ 0 (6b)

m2 ≥ 0 (6c)

m3 ≥ 0. (6d)
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Although three out of the four inequalities are trivial, the first one is not. However, note

that the inequalities implied by Fguess1 and Fguess2 are complementary, i.e. if we violate one

we have to satisfy the other. What is also interesting is the inequalities (4) and (6) are blind

to index-swapping, i.e. m1 ↔ m2. This is what we expect since Nature should not care

about our labeling. Thus we can always model three arbitrary measurements with two bits.

Let us try to generalize these assignments for an arbitrary number of bits. If we denote

the matrix Fguess1 as H22 , we can enumerate the elements of the sequence {H2k} by

H2k =

H2k−1 H2k−1

H2k−1 1⊕H2k−1

 ,

where (1⊕H2k)ij = 1⊕ (H2k)ij, and ⊕ is addition mod 2. This seems to tell us that we can

indeed model 2n − 1 measurements.

Suppose we have three bits, and seven measurements. The inequalities implied by H23

are

−3 +m1 +m2 +m3 +m4 +m5 +m6 +m7 ≥ 0 (7a)

1−m1 +m2 −m3 +m4 −m5 +m6 −m7 ≥ 0 (7b)

1 +m1 −m2 −m3 +m4 +m5 −m6 −m7 ≥ 0 (7c)

1−m1 −m2 +m3 +m4 −m5 −m6 +m7 ≥ 0 (7d)

1 +m1 +m2 +m3 −m4 −m5 −m6 −m7 ≥ 0 (7e)

1−m1 +m2 −m3 −m4 +m5 −m6 +m7 ≥ 0 (7f)

1 +m1 −m2 −m3 −m4 −m5 +m6 +m7 ≥ 0 (7g)

1−m1 −m2 +m3 −m4 +m5 +m6 −m7 ≥ 0 (7h)

Note that the inequalities are not invariant under index-swapping. You can check that

{m1 = 0.8,m2 = 0.7,m3 = 0.9,m4 = 0.1,m5 = 0.3,m6 = 0.4,m7 = 0.2} satisfies the

inequalities (7), but 1−m1 −m2 −m3 +m4 +m5 +m6 −m7 = −0.8 < 0. This is contrary

to what we expect.

Let us see what happens with the generalization of Fguess2. The generalization would be

F2n =

1 1

0 112n−1


17



Again, supposing that we have three bits and seven measurements, we get the inequalities

1−m1 −m2 −m3 −m4 −m5 −m6 −m7 ≥ 0 (8a)

m1 ≥ 0 (8b)

m2 ≥ 0 (8c)

m3 ≥ 0 (8d)

m4 ≥ 0 (8e)

m5 ≥ 0 (8f)

m6 ≥ 0 (8g)

m7 ≥ 0 (8h)

Here we note that although seven out of the eight inequalities are trivially satisfied,

inequality (8a) is non-trivial. Also, there is no complementary relation between inequality

(7a) and inequality (8a), although satisfying inequality (8a) will imply inequalities (7b) -

(7h).

Thus the generalizations of assignments in equations (3) and (5) does not seem to be

useful. This motivates us to do a numerical search of 23x23 matrices that will explain seven

arbitrary measurements. However to do an exhaustive search we need to check
(
22

3

7

)
≈ 1013

matrices. This is well beyond the computational power of home computers.

Note that the requirement of invariability significantly reduces our search space of F . To

take advantage of the reduction, we need to formalize the notion. We say that F is blind to

index-swapping if and only if for all permutation matrices Π ∈ Pn−1, we require ΠF = FΠ′

for some Π′ ∈ Pn−1, where Pn−1 denotes the set of all permutation matrices of n elements

with the first element fixed. In simple terms, it means that permuting {mi} corresponds to

some permutation of columns in F , and thus, a permutation of the inequalities. We only

consider the permutations Pn−1 since we do not want to swap out the first row of F or M .

We have searched the
(
16
3

)
4x4 matrices and found 12 matrices that commute with the

permutation group. However even with this reduction in search space, it will still take weeks

to look for 8x8 matrices that commutes with permutation group. Thus it appears that this

18



approach is not scaling well. Nevertheless we have proved that we can indeed model three

arbitrary measurements with two bits.

B. The smart way

As mentioned before, parameter counting suggests that we can model 2n − 1 arbitrary

measurements. However the naive way is not effective due to the sheer size of the search

space. In this section we present an explicit construction that proves that n bits can model

2n − 1 arbitrary measurements.

Theorem 2. A model with n bits can explain 2n − 1 arbitrary expectation values.

Proof. 1. Order mi so that m1 ≤ m2 ≤ . . . ≤ m2n−1. We can always do this since Nature

does not care about our labeling and thus exchanging labels are allowed.

2. Let

p1 = m1

p2 = m2 −m1

p3 = m3 −m2

...

p2n−1 = m2n−1 −m2n−2

p2n = 1−m2n−1 (9)

and

fi(r) =

 1, if r ≤ i

0, otherwise
(10)

3. Then

f i =
∑
r

fi(r) pr

= m1 +m2 −m1 + . . .+mi −mi−1

= mi
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Remark 1. Seeing that we get the result we expected from parameter counting, it is easy to

discount this result as trivial. However as seen in the previous section, it is nontrivial that

there is an assignment of functions and probabilities that will explain 2n− 1 measurements.

We also note that this solution is blind to renaming of variables, i.e. mi ↔ mj.

It is easy to check that the assignments in equations (9) and (10) satisfies our requirements

that pi ≥ 0 and fi(r) ∈ {0, 1}.

C. The error bars

Now that we proved we can model any 2n− 1 measurements, we can direct our attention

to Problem 2 again. Since any 2n − 1 measurements can be modeled by n bits, we have

to consider cases where we have 2n measurements on n bits. However, we cannot draw a

picture like Figure 2. Thus it is hard to derive a tight bound for tolerable errors. However

even with the results that we have we can derive a reasonable upper bound for the error.

First, we need to define what do we mean by independent measurements. We say that

mi and mj are independent if mi and mj are distinct. We say mi and mj are distinct if

[mi −∆m,mi + ∆m] and [mj −∆m,mj + ∆m] are completely disjoint. In other words, we

cannot ascribe one function to explain both mi and mj. Equiped with these definitions, we

can prove the following statement.

Lemma 3. To distinguish between l measurements, we need ∆m = O((2l)−1).

Proof. 1. If mi and mj are distinguishable, then for i 6= j, [mi−∆m,mi+∆m] and [mj−

∆m,mj + ∆m] are completely disjoint.

2. It follows that ∆m is maximized when {mi} are equally spaced (see Figure 7)

3. If mi are equally spaced, then ∆m = (2l)−1. Since this is the upper bound, we can

say that ∆m = O((2l)−1).

This naturally implies the following Theorem.

Theorem 4. To disprove an n bit model, we need ∆m = O(2−(n+1)).
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FIG. 7. It is shown that ∆m will be maximized when {mi} are equally spaced.

Proof. 1. By Theorem 2, an n bit model can explain any 2n − 1 independent measure-

ments. Thus to disprove an n bit model we need to perform at least 2n independent

measurements.

2. By Lemma 3, we need ∆m = O(2−(n+1)) to distinguish 2n measurements.

We see that Theorem 4 agrees with the bound that we derived earlier, i.e. ∆mmax(1 bit) =

1
6
≤ 1

4
.

D. The implications

It is easy to imagine a physical scenario where Theorem 4 along with the uncertainty

principle implies that we will not be able to disprove a model with n ≥ nmax bits. A rough

estimation of nmax follows. First we need to calculate ∆m for a generic setup. We will follow

the derivation by Kofler et. al [9], but using polarizers instead of magnets.

Suppose we have a source that emits photons . It follows that the amount of information

that the photon carries cannot be greater than the number of bits that characterizes the

source. Furthermore, assume that the classical bits are encoded in the polarization of the

photons. Suppose we want to set the polarizer at some angle θ with some uncertainty ∆θ.

We know that for wave functions that are 2π-periodic [10],

[θ, L] = i~. (11)

Since we are using the polarizer as a measuring device, we will assume that its wave

function is sharply peaked at θ, and thus there is no concern of periodicity. Now, assume
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that the photon starts interacting with the polarizer at t = 0 and stops interacting at t = τ .

The Hamiltonian of a freely rotating polarizer is given by H = L2

2I
, where L is the angular

momentum of the polarizer, I ≈ MR2 is the moment inertia of the polarizer, M is the

mass of the polarizer, and R is the radius of the polarizer. In the Heisenberg picture, an

observable will evolve as dθ
dt

= −i [θ,H]
~ = L

I
. Hence,

θ(τ) = θ(0) +
Lτ

I
. (12)

Recall the generalized uncertainty principle,

∆A∆B ≥ 1
2
|〈[A,B]〉|, (13)

where A and B are arbitrary operators. Combining equations (11), (12), and (13), we

get

∆θ(0)∆θ(τ) ≥ ~τ
MR2

.

It follows that either ∆θ(0) or ∆θ(τ) obeys

∆θ ≥
√

~τ
MR2

.

If we assume that the interaction time τ ≥ R/c (we require that an observer at the rim

of the polarizer knows that the photon is passing through), we get

∆θ ≥
√

~
cMR

(14)

Equation (14) along with Theorem 4 implies that

nmax = 1
2
log2

cMR

~
− 1 (15)

Substituting nonsensical numbers (M = total mass of the universe, R = diameter of the

universe) into equation (15), we get nmax ≈ 60. For comparison, the Bekenstein bound (the

limit of information that a volume can carry, see [11]) for a hydrogen atom is on the order

of 106 bits. If we take a proton, the Bekenstein bound is on the order of 44 bits [12]. Thus

in a practical setting, there is little hope of measuring a violation of this model.
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Remark 2. It is important to note that this model investigates what happens after a mea-

surement. We merely investigate if there is any fundamental restriction on these models.

We found that these models cannot model quantum mechanics, however with the presence

of uncertainty, there are effectively no such restriction. We are not claiming that such a

model exists.

IV. CONCLUSION AND FUTURE WORKS

We asked if it is possible to model the universe with classical bits, i. e. assuming that

every physical object carries a finite number of classical bits and measurement outcomes

can be calculated as functions of those bits. We have answered this question in the negative

by showing that quantum predictions for a single spin-1/2 system are not compatible with

such classical models. However, we also showed that limitations on measurement precision

imposed by the very quantum mechanics make it practically impossible to disprove the

classical model operating even on small number of bits. Since typically the number of bits

in a physical object scales with its size we conclude that the bigger the system gets the

harder it is to observe the difference between the quantum and the classical models. This

supports similar observations made by Kofler et. al. [9].

We have left open the question of deriving the exact bound for maximum error allowed to

disprove the classical model with n bits since even with our bounds we can deduce sensible

predictions. We are also still working on concrete example of quantum expectation values

that allow one to disprove the n-bit classical model. Present results demonstrate that there

must exist such an example but its closed form would definitely complete the picture.

Finally, it would be very interesting to find a physical situation where the models we

discussed would naturally emerge. We were thinking that such a possibility can occur in

relation to the Bekenstein bound [11]. This bound gives the maximal number of bits that

can be encoded in a volume. We would like to take a closer look at this bound and check

if it indeed discusses classical bits. If yes, then any object emerging from a volume (say a

photon from hydrogen atom) cannot carry more bits that the bound and we could verify it

experimentally by performing sufficiently many precise measurements on the photons. We

have done preliminary calculations for various systems but all of them turn out to be outside
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the reach of experiments.
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