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Abstract

The Bell’s inequality is derived under assumption of the local hid-

den variable models. Therefore all non-entangled particles satisfy

Bell’s inequality, as I will briefly argue. However, bi-partite entan-

gled states can violate Bell’s inequality. It has been shown to be true

for bi-partite maximally entangled states. I will rederive this so-called

Gisin’s theorem, in a slightly different way.
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1 Introduction

In 1964 John Bell has shown that certain quantum predictions cannot be un-

derstood on the basis of general classical-like theories, so called local hidden

variable models. He assumed local hidden variables are carried by particles,

and came up with an inequality to describe this. The inequality is named

after him, the Bell’s inequality. Bell’s inequality can be verified through

experiments. Recently, in 2015, there were three loophole-free Bell test ex-

periments within three months by independent groups [1][2][3]. We can safely

say that in its roots nature is not in agreement with local hidden variable

models.

Bell’s inequality can also be expressed in the form of Clauser, Horne, Shi-

mony, and Holt (CHSH) inequality. It has been shown that CHSH inequality

is violated by all pure entangled states [4][5]. I will review this and conclude

the proof in a slightly different way.

2 Review on some aspects of quantum for-

malism

2.1 Condition for entanglement

Quantum entanglement is a phenomenon where, even though two or more

objects are separated from each other in space, the quantum states that

describes them can only be attributed to all particles.

A bi-partite state |ψ〉AB is entangled if

|ψ〉AB 6= |ψ〉A |ψ〉B . (1)

So the following state

|ψ〉AB = CE |00〉+ CF |01〉+DE |10〉+DF |11〉
= (C |0〉+D |1〉)⊗ (E |0〉+ F |1〉),

(2)

is an example of non-entangled state as we explicitly factorized it into |ψ〉A
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and |ψ〉B. A handy way of decoding whether a pure state is entangled is

presented in the next section.

2.2 Schmidt decomposition

Schmidt decomposition is a form of expressing a vector in a tensor product

space [6]. Let |ψ〉 be a pure state of a system AB, which can be given as:

|ψ〉 =
∑
jk

ajk |j〉 |k〉 (3)

where |j〉 and |k〉 are any orthonormal bases for systems A and B respectively,

and a is a matrix of complex numbers ajk. Using singular value decomposi-

tion, a = UDV +, where D is a diagonal matrix with non-negative elements,

and U and V + are unitary matrices. Hence,

|ψ〉 =
∑
ijk

UjiDiiV
+
ik |j〉 |k〉 . (4)

Define |iA〉 =
∑

j Uji |j〉 , |iB〉 =
∑

k V
+
ik |k〉 , λi = Dii, the Schmidt decompo-

sition of |ψ〉 is:

|ψ〉 =
∑
i

λi |iA〉 |iB〉 . (5)

In other words, there exist orthonormal states |iA〉 and |iB〉 for systems A and

B respectively and real coefficients λi (also called the Schmidt coefficient). If

|ψ〉 has at least two non-zero Schmidt coefficients, then |ψ〉 is entangled.

For example, let us find out if the following state is entangled:

|ψ〉 =
1

2
(|00〉+ |10〉+ |01〉+ |11〉). (6)

We can use the Schmidt decomposition. Through singular value decomposi-

tion,

U =
1√
2

(
1 −1

1 1

)
, V + =

1√
2

(
1 1

−1 1

)
, D =

(
1 0

0 0

)
. (7)
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Using |iA〉 =
∑1

j=0 Uji |j〉, we get:

|0A〉 =
1√
2
|0〉+

1√
2
|1〉 , |1A〉 = − 1√

2
|0〉+

1√
2
|1〉 . (8)

Using |iB〉 =
∑1

k=0 V
+
ik |k〉, we get:

|0B〉 =
1√
2
|0〉+

1√
2
|1〉 , |1B〉 = − 1√

2
|0〉+

1√
2
|1〉 . (9)

Using λi = Dii, we get:

λ0 = 1, λ1 = 0. (10)

Substitute (8), (9), and (10) into (5),

|ψ〉 = 1(
1√
2
|0〉+

1√
2
|1〉)( 1√

2
|0〉+

1√
2
|1〉). (11)

Since |ψ〉 has only one non-zero Schmidt coefficient, it is clearly not an en-

tangled state.

2.3 Density operator

The density operator describes arbitrary quantum states. In a mixed state,

the system is in two or more states with their corresponding probabilities.

Density operator ρ of mixed state is:

ρ =
∑
j

Pj |ψj〉 〈ψj| , (12)

where Pj is the probability.

In a pure state, the system is in only one state, with a corresponding

probability of 1. Hence, the density operator of pure state is just a projection

operator.

For a qubit, the density operator can also be expressed in the form:

ρ =
1

2
(σ0 + ~s.~σ), (13)
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Figure 1: Bloch sphere. States on the surface are pure and inside are mixed.

where σ0 is the identity matrix, ~s is vector with components (sx, sy, sz) and

~σ is vector with components (σx, σy, σz). ~s is called the Bloch vector. ~σ

consists of Pauli matrices:

σx =

(
0 1

1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0

0 −1

)
. (14)

2.4 Bloch sphere

The Bloch sphere is a geometric representation of qubit states as points

within a unit sphere (Fig. 1).

2.4.1 Pure state

A qubit is in a pure state if the corresponding Bloch vector lies on the surface

of the Bloch sphere. The condition for purity is Tr(ρ2) = Tr(ρ) = 1 [7], where

Tr is the trace of a matrix.

To prove that, we can evaluate Tr(ρ2).

Tr(ρ2) =
1

2
(1 + ~r2). (15)

While evaluating, we can use the expression Tr(σµσν) = 2δµν to assist in our
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calculation, where δµν is the Kronecker delta. When Tr(ρ2) = 1, we get:

|~r| = 1. (16)

Since |~r| = 1, the points all lie on the surface of the Bloch sphere, which

means the qubit is in a pure state.

2.4.2 Mixed state

A qubit is in a mixed state if the Bloch vector lies within the Bloch sphere.

We can show that by evaluating the eigenvalues of the density operator.

From the eigenvalues, we can determine the radius of the Bloch vectors.

det(ρ− λσ0) = 0 (17)

λ2 − λ− ~r2

4
+

1

4
= 0. (18)

Solving the quadratic equation, we get:

λ1 =
1 + |~r|

2
, λ2 =

1− |~r|
2

. (19)

The eigenvalues are non negative, therefore:

0 ≤ |~r| < 1. (20)

For a mixed state, the radius is between 0 to 1, which means the Bloch vector

lies within the Bloch sphere.

2.4.3 Opposite vectors

Let ρ1 = 1
2
(σ0 + ~r.~σ) and ρ2 = 1

2
(σ0 + ~s.~σ). When Tr(ρ1ρ2) = 0, density

operators ρ1 and ρ2 are orthogonal to each other while the Bloch vectors ~r

and ~s are in opposite direction on the Bloch sphere.

We can show this by evaluating the following:

Tr(ρ1ρ2) =
1

2
(1 + ~r.~s). (21)
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Again, we use Tr(σµσν) = 2δµν to assist in our calculation. When Tr(ρ1ρ2) =

0, we get:

|~r|.|~s| = −1. (22)

The dot product can be expressed as another form, |~r||~s| cos θ = −1. Since

|~r| and |~s| are equal to 1, we get:

θ = π, (23)

where θ is the angle between the two vectors. We see that ~r and ~s points in

opposite direction. In other words, ~r = −~s.

2.5 Measurement

Consider an observable having two measurement results with (eigenvalues)

equal to ±1. The operator for the measurement is:

M = (+1) |m+〉 〈m+|+ (−1) |m−〉 〈m−|

=
1

2
(σ0 + ~m+.~σ)− 1

2
(σ0 + ~m−.~σ).

(24)

Since ~m− is opposite to ~m+, ~m− = −~m+. Hence,

M = ~m+.~σ, (25)

where |~m+| = 1.

3 Violation of CHSH inequality by pure en-

tangled states

3.1 CHSH inequality

Consider two observers Alice and Bob, and a source that produces two-

particle states. One particle is sent to Alice, who can choose between two

observables a and a′ (a and a′ can stand for angular momentum measure-

ments along two different axes). The other particle is sent to Bob, who can
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Figure 2: Bell test experiment.

choose between two observables b and b′. We will let the measurement results

be ±1, in other words a, a′, b, b′ = ±1. This is the Bell test experiment (Fig.

2).

In order to derive the Bell-CHSH inequality, we start with

(a+ a′)b+ (a− a′)b′ = ±2. (26)

If (a + a′) = 0, (a− a′) = ±2 and if (a− a′) = 0, (a + a′) = ±2. We obtain

the inequality by averaging (26) over many experimental runs [8].

S = E(a, b)− E(a, b′) + E(a′, b) + E(a′, b′) ≤ 2, (27)

where, for example E(a, b) is the average of the product of local results a.b.

3.2 Local hidden variable model

In local hidden variable model, the particles obey locality (the measurement

results at Alice are independent of any actions in Bob’s lab) and admit hidden

variables [9]. Hidden variables can be anything not present in quantum

formalism. Mathematically, they can take the form of numbers, vectors,

matrices, etc. Since Bell’s inequality is based on the local hidden variable

model, it is satisfied by all local hidden variable models.

Within local hidden variable model, the probability that Alice observes

a when she measures observable x and Bob observes b when he measures
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observable y is given by:

P (a, b|x, y) =
∑
λ

PλP (a|x, λ)P (b|y, λ), (28)

where λ denotes hidden variables and Pλ is their distribution.

3.3 All non-entangled particles satisfy Bell’s inequality

If particles are not entangled, their state can be expressed as

ρ =
∑
j

Pjαj ⊗ βj, (29)

where Pj are probabilities and αj, βj are density matrices.

We will evaluate PQM(a, b|x, y) measured on ρ:

PQM(a, b|x, y) = Tr(ρ |ax〉 〈ax| ⊗ |by〉 〈by|). (30)

Substitute (29) into (30),

PQM(a, b|x, y) =
∑
j

PjTr((αj ⊗ βj)(|ax〉 〈ax| ⊗ |by〉 〈by|))

=
∑
j

PjTr(αj |ax〉 〈ax| ⊗ βj |by〉 〈by|)

=
∑
j

PjTr(αj |ax〉 〈ax|).Tr(βj |by〉 〈by|)

=
∑
j

PjP (a|x, αj)P (b|y, βj).

(31)

By choosing λ = (j, αj, βj) and pλ = pj, Eq. (31) is shown to have the form

PQM(a, b|x, y) =
∑
λ

PλP (a|x, λ)P (b|y, λ), (32)

familiar from local hidden variable model. Therefore, all non-entangled par-

ticles satisfy Bell’s inequality.
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3.4 Expectation value

In order to evaluate quantum value of Bell’s parameters for entangled states,

we will need the following considerations. In quantum mechanics, the mea-

surement made by Alice, MA, and Bob, MB, can be expressed as

MA = ~aK .~σ, MB = ~bL.~σ, (33)

where K and L can be 1 or 2, refer (25).

The eigenstates of these observables are:

|+〉A 〈+| =
1

2
(σ0 + ~aK .~σ), |−〉A 〈−| =

1

2
(σ0 − ~aK .~σ),

|+〉B 〈+| =
1

2
(σ0 +~bL.~σ), |−〉B 〈−| =

1

2
(σ0 −~bL.~σ).

(34)

The general form of expectation value is given by:

E( ~aK , ~bL) =P (++) + P (−−)− P (+−)− P (−+)

= 〈ψ|+ +〉 〈+ + |ψ〉+ 〈ψ| − −〉 〈− − |ψ〉−
〈ψ|+−〉 〈+− |ψ〉 − 〈ψ| −+〉 〈−+ |ψ〉

=〈ψ|MA ⊗MB|ψ〉.

(35)

3.5 All pure entangled states of two qubits violate CHSH

inequality

The general state of two qubits can be written in the Schmidt decomposition

|ψ〉 = cos(α) |00〉+ sin(α) |11〉 , α ∈
[
0,
π

4

]
, (36)

where we define |0〉 =

(
1

0

)
and |1〉 =

(
0

1

)
.

Let us consider measurements in the XZ plane:

MA = sin(aK).σx + cos(ak).σz, MB = sin(bL).σx + cos(bL).σz. (37)
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Substitute (37) into (35), the expectation value is:

E( ~aK , ~bL) = sin(aK) sin(bL)〈ψ|σx ⊗ σx|ψ〉+ sin(aK) cos(bL)〈ψ|σx ⊗ σz|ψ〉+
cos(aK) sin(bL)〈ψ|σz ⊗ σx|ψ〉+ cos(aK) cos(bL)〈ψ|σx ⊗ σx|ψ〉.

(38)

From the Schmidt decomposition,

〈ψ|σx ⊗ σx|ψ〉 = sin(2α), 〈ψ|σx ⊗ σz|ψ〉 = 0,

〈ψ|σz ⊗ σx|ψ〉 = 0, 〈ψ|σx ⊗ σx|ψ〉 = 1.
(39)

Substitute (39) into (38), the expectation value is now:

E( ~aK , ~bL) = cos(aK) cos(bL) + sin(2α) sin(aK) sin(bL). (40)

Substitute (40) into the left-hand side of the CHSH inequality in Eq. (27),

S = cos(aK)[cos(bL) + cos(b′L)] + cos(a′K)[cos(bL)− cos(b′L)]+

sin(2α){sin(aK)[sin(bL) + sin(b′L)] + sin(a′K)[sin(bL)− sin(b′L)]}.
(41)

We note that this can be expressed in the form of four vectors. The vectors

are
~v1 = (cos(aK), sin(aK)),

~v2 = (cos(a′K), sin(a′K)),

~w1 = (cos(bL) + cos(b′L), sin(2α)[sin(bL) + sin(b′L)]),

~w2 = (cos(bL)− cos(b′L), sin(2α)[sin(bL)− sin(b′L)]).

(42)

Hence,

S = ~v1. ~w1 + ~v2. ~w2. (43)

The sum of dot products of vectors is less than or equal to the sum of mag-

nitude of vectors:

S = |~v1|| ~w1| cos(α) + |~v2|| ~w2| cos(α) ≤ |~v1|| ~w1|+ |~v2|| ~w2|, (44)

and this bound can be achieved as ~v1 and ~v2 are arbitrary unit vectors, so

they can always be put parallel to ~w1 and ~w2. We have:

S = |~v1|| ~w1|+ |~v2|| ~w2| =
√

[cos(bL) + cos(b′L)]2 + sin2(2α)[sin(bL) + sin(b′L)]2+√
[cos(bL)− cos(b′L)]2 + sin2(2α)[sin(bL)− sin(b′L)]2.

(45)
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Figure 3: Graph of right-hand side of (48) against bL.

We can choose a starting point of measurement from anywhere, so we let

b′ = 0 without loss of generality.

S = |~v1|| ~w1|+ |~v2|| ~w2| =
√

[1 + cos(b′L)]2 + sin2(2α) sin2(bL)+√
[1− cos(b′L)]2 + sin2(2α) sin2(bL).

(46)

This can be expressed in the form of the following two vectors:

~x = (1, sin2(2α)), ~y = ((1 + cos(bL))2, sin2(bL)). (47)

For the dot product of these two vectors to have the greatest value, they

must be aligned parallel to each other, in other words

sin2(2α) =
sin2(bL)

(1 + cos(bL))2
. (48)

From Fig. 3, the graph is continuous in the range from 0 to 1 on the y-axis.

This means that there is always a bL that solves the equation. Substitute
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Figure 4: Graph of right-hand side of (49) against bL.

(48) into (46), we get:

S = |~v1|| ~w1|+ |~v2|| ~w2| =

√
(1 + cos(bL))2 +

sin4(bL)

(1 + cos(bL))2
+√

(−1 + cos(bL))2 +
sin4(bL)

(1 + cos(bL))2
.

(49)

We need to check bL from the range 0 to π
2

since the range of α is from 0

to π
4
. From Fig. 4, we see that (49) is always greater than 2 in this range.

Therefore, CHSH inequality is violated for all bi-qubit entangled pure states.

3.6 Restricted local hidden variable model

We have shown that all entangled pure states violate a Bell inequality and

that all non-entangled states satisfy Bell inequalities. Here, we will like to ask

if restricting local hidden variable models allows even non-entangled states

to violate analog of Bell inequality.
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Case a+ b+ b−

1 ±rA ±1 ±rB
2 ±rA ±rB ±1

Table 1: Measurement results

As the simplest case, we consider a source which sends one bit to Alice

and one bit to Bob. Let the bit sent to Alice be rA = ±1 and that to Bob

be rB = ±1. Alice can choose between two settings, x = ±1 and Bob can

choose between two settings, y = ±1. The measurement results of Alice can

be calculated using one of four functions ax(rA) and similarly for Bob by(rB):

ax(rA) = ±1,±rA, by(rB) = ±1,±rB. (50)

The expectation value is:

Exy =
∑
ax,by

axbyP (ax, by)

=
∑

rA,rB ,a,b

= ax(rA)by(rB)P (ax(rA) = a, by(rB) = b|rA, rB).P (rA, rB)

= axby.

(51)

Thus,

Exy = (±1 or± rA).(±1 or± rB). (52)

Consider only the correlation functions that satisfy:

E++ 6= ±1, E+− 6= ±1, E++ 6= E+− 6= −E+−. (53)

The only non-trivial choices of functions ax(rA) and by(rB) are gathered in

Table 1.

In case 1, the result of b+ is fixed at ±1. We obtain:

E++ = ±rA, E+− = ±rArB. (54)

In case 2, the result of b− is fixed at ±1. We obtain:

E++ = ±rArB, E+− = ±rA. (55)
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The probability in terms of function of results of Alice and Bob is:

P (rA, rB) =
1

4
(1 + rAE11 + rBrB + rArBE12) ≥ 0. (56)

By setting rA = +1 and rB = +1, rA = +1 and rB = −1, rA = −1 and

rB = +1, rA = −1 and rB = −1, we get the four equations respectively.

1 + E++ + rB + E+− ≥ 0,

1 + E++ − rB − E+− ≥ 0,

1− E++ + rB − E+− ≥ 0,

1− E++ − rB + E+− ≥ 0.

(57)

This will mean that the two correlation functions E++ and E+− cannot be

obtained by measuring particles which carry only one bit of hidden variable

each.

4 Conclusion

In summary, I have reviewed the argument that the results of all possible

measurements on non-entangled states will always satisfy Bell inequalities.

I have also proven that all pure entangled states of two qubits violate the

CHSH inequality, where this statement is known as Gisin’s theorem.

An interesting future research direction is to consider hidden variable

models with somewhat restricted hidden variables. For example, we could

allow only finite number of bits to be carried as hidden variables. In such

cases, it is plausible that even non-entangled quantum states will violate an

analog of Bell inequalities. Last section describes first steps in this direction.
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