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Abstract

The Bell’s inequality is derived under assumption of the local hid-
den variable models. Therefore all non-entangled particles satisfy
Bell’s inequality, as I will briefly argue. However, bi-partite entan-
gled states can violate Bell’s inequality. It has been shown to be true
for bi-partite maximally entangled states. I will rederive this so-called
Gisin’s theorem, in a slightly different way.
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1 Introduction

In 1964 John Bell has shown that certain quantum predictions cannot be un-
derstood on the basis of general classical-like theories, so called local hidden
variable models. He assumed local hidden variables are carried by particles,
and came up with an inequality to describe this. The inequality is named
after him, the Bell’s inequality. Bell’s inequality can be verified through
experiments. Recently, in 2015, there were three loophole-free Bell test ex-
periments within three months by independent groups [1][2][3]. We can safely
say that in its roots nature is not in agreement with local hidden variable
models.

Bell’s inequality can also be expressed in the form of Clauser, Horne, Shi-
mony, and Holt (CHSH) inequality. It has been shown that CHSH inequality
is violated by all pure entangled states [4][5]. I will review this and conclude

the proof in a slightly different way.

2 Review on some aspects of quantum for-

malism

2.1 Condition for entanglement

Quantum entanglement is a phenomenon where, even though two or more
objects are separated from each other in space, the quantum states that
describes them can only be attributed to all particles.

A bi-partite state [¢) ,5 is entangled if

V) ap 7 [0)ald)p - (1)

So the following state

1) 1y = CE|00) + CF |01) + DE |10) + DF |11)

2
—(Cl0)+ D) @ (B]0)+ FI1), @

is an example of non-entangled state as we explicitly factorized it into [¢) ,
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and [¢)z. A handy way of decoding whether a pure state is entangled is
presented in the next section.

2.2 Schmidt decomposition

Schmidt decomposition is a form of expressing a vector in a tensor product
space [6]. Let |[¢)) be a pure state of a system AB, which can be given as:

¥) =3 as i) ) 3

where |j) and |k) are any orthonormal bases for systems A and B respectively,
and a is a matrix of complex numbers a,;;. Using singular value decomposi-
tion, a = UDV™, where D is a diagonal matrix with non-negative elements,
and U and V' are unitary matrices. Hence,

) = Z UjiDnViEﬁ 17) 1K) - (4)

ijk

Define |ia) = >, Ujil7) ;i) = 22, Vi |k) s \i = Dy, the Schmidt decompo-
sition of |1} is:

Y) = ZAi lia) lin) - (5)

In other words, there exist orthonormal states |i4) and |ig) for systems A and

B respectively and real coefficients \; (also called the Schmidt coefficient). If

|4) has at least two non-zero Schmidt coefficients, then [¢)) is entangled.
For example, let us find out if the following state is entangled:

) = %(!00> +[10) + [01) + [11)). (6)

We can use the Schmidt decomposition. Through singular value decomposi-

1 (1 -1 L1 (11 (10
cwal ) ealh) osln) o

tion,



Using [ia) = 35— Uji |5), we get:

1 1

1
EIO \/§I1>7 [1a) = =—=10) +

Using |ig) = S x_o Vit |k), we get:

|0A> = >+

08) = =10} + = 1), [18) = ——=10) +

1 1
V2
Using \; = D;;, we get:

)\0 — 1, )\1 - 0 (10)

Substitute , @[}, and into ,

1 1 1 1
=1(—0) + —=|1))(—=|0) + —= |1)). 11
1Y) (\/5!>\/§|>)(\/§|> \/§|>) (11)
Since |¢) has only one non-zero Schmidt coefficient, it is clearly not an en-
tangled state.

2.3 Density operator

The density operator describes arbitrary quantum states. In a mixed state,
the system is in two or more states with their corresponding probabilities.

Density operator p of mixed state is:
p=>_Pily) (Wl (12)
J

where P; is the probability.

In a pure state, the system is in only one state, with a corresponding
probability of 1. Hence, the density operator of pure state is just a projection
operator.

For a qubit, the density operator can also be expressed in the form:

1
p=5lo0+55) (13)



1)

Figure 1: Bloch sphere. States on the surface are pure and inside are mixed.

where o0 is the identity matrix, s is vector with components (s,, s, s,) and
G is vector with components (0,,0,,0.). § is called the Bloch vector. &

consists of Pauli matrices:

0 1 0 —i 10
g”:<1 0)’ Uy:<i 0)’ UZZ(O —1)' (14)

2.4 Bloch sphere

The Bloch sphere is a geometric representation of qubit states as points
within a unit sphere (Fig. [1)).
2.4.1 Pure state

A qubit is in a pure state if the corresponding Bloch vector lies on the surface
of the Bloch sphere. The condition for purity is Tr(p?) = Tr(p) = 1 [7], where
Tr is the trace of a matrix.

To prove that, we can evaluate Tr(p?).
2y _ 1 )
Tr(p?) = 5(1 + 7). (15)

While evaluating, we can use the expression Tr(o,0,) = 24, to assist in our



calculation, where 0, is the Kronecker delta. When Tr(p?) = 1, we get:
=1 (16)

Since |r] = 1, the points all lie on the surface of the Bloch sphere, which
means the qubit is in a pure state.

2.4.2 Mixed state

A qubit is in a mixed state if the Bloch vector lies within the Bloch sphere.
We can show that by evaluating the eigenvalues of the density operator.

From the eigenvalues, we can determine the radius of the Bloch vectors.

det(p — Aog) =0 (17)
=2
1
Noa-l o= 1
71 0 (18)
Solving the quadratic equation, we get:
1 1—
I (19)

The eigenvalues are non negative, therefore:
0<|r <1. (20)

For a mixed state, the radius is between 0 to 1, which means the Bloch vector
lies within the Bloch sphere.

2.4.3 Opposite vectors

Let p; = %(00 + 7.0) and py = %(00 + §.7). When Tr(pi1p2) = 0, density
operators p; and po are orthogonal to each other while the Bloch vectors 7
and S are in opposite direction on the Bloch sphere.

We can show this by evaluating the following:

Tr(p1p2) = %(1 + 7.5). (21)



Again, we use Tr(o,0,) = 26, to assist in our calculation. When Tr(p1p2) =
0, we get:

7 = —1. (2)
The dot product can be expressed as another form, |7|5] cosf = —1. Since
|7] and |5] are equal to 1, we get:

0=m, (23)
where 6 is the angle between the two vectors. We see that 7 and § points in

opposite direction. In other words, 7= —s.

2.5 Measurement

Consider an observable having two measurement results with (eigenvalues)

equal to +1. The operator for the measurement is:

M = (+1) [m) (my| + (=1) [m_) (m_|

1 1 o (24)
= 5(0'0 + m+.0) — 5(0’0 + m_.a).
Since m_ is opposite to m, m_ = —m. Hence,

where || = 1.

3 Violation of CHSH inequality by pure en-
tangled states

3.1 CHSH inequality

Consider two observers Alice and Bob, and a source that produces two-
particle states. One particle is sent to Alice, who can choose between two
observables a and @’ (@ and o’ can stand for angular momentum measure-

ments along two different axes). The other particle is sent to Bob, who can
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Figure 2: Bell test experiment.

choose between two observables b and o'. We will let the measurement results
be £1, in other words a,a’,b,’ = £1. This is the Bell test experiment (Fig.

2).
In order to derive the Bell-CHSH inequality, we start with
(a4 a)b+ (a—d )b =+2. (26)

If (a+d)=0,(a—d)==22andif (a —a') =0, (a+d)=22. We obtain
the inequality by averaging over many experimental runs [§].

S = E(a,b) — E(a,b) + E(d’,b) + E(a, V) < 2, (27)

where, for example E(a,b) is the average of the product of local results a.b.

3.2 Local hidden variable model

In local hidden variable model, the particles obey locality (the measurement
results at Alice are independent of any actions in Bob’s lab) and admit hidden
variables [9]. Hidden variables can be anything not present in quantum
formalism. Mathematically, they can take the form of numbers, vectors,
matrices, etc. Since Bell’s inequality is based on the local hidden variable
model, it is satisfied by all local hidden variable models.

Within local hidden variable model, the probability that Alice observes
a when she measures observable x and Bob observes b when he measures

10



observable y is given by:

P(a,b|x,y) ZPA (alz, \)P(bly, \), (28)
where A denotes hidden variables and P, is their distribution.

3.3 All non-entangled particles satisfy Bell’s inequality

If particles are not entangled, their state can be expressed as
p= ZPJ‘O@'@@, (29)
J

where P; are probabilities and «;, 8; are density matrices.
We will evaluate Pgas(a,blz,y) measured on p:

Pom(a,blz,y) = Tr(plaz) (az| @ [by) (by|). (30)
Substitute into ([30)),
Pou(a,blz,y) = PTr((a; @ B))(|az) (ae] @ [by) (b))

= Z PiTr(a; |az) (az| @ B [by) (by|)
= 3 Py ) ()T 1) )
— Z P;P(a|z, a;)P(bly, B;).

By choosing A = (j, o, 8;) and p\ = p;, Eq. is shown to have the form

Pou(a,blz,y) ZPA (alz, \)P(bly, \), (32)

familiar from local hidden variable model. Therefore, all non-entangled par-

ticles satisfy Bell’s inequality.
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3.4 Expectation value

In order to evaluate quantum value of Bell’s parameters for entangled states,
we will need the following considerations. In quantum mechanics, the mea-

surement made by Alice, M,, and Bob, Mg, can be expressed as

—

My = a3.d, Mg =b;.5, (33)

where K and L can be 1 or 2, refer ([25).
The eigenstates of these observables are:

)4 (H = 500+ @), |- 6-| = 500 — ),
)5 (H = 5000+ B.), 1= (-1 = o0~ B.9). !
The general form of expectation value is given by:
E(dfc,br) =P(++) + P(—) — P(+—) — P(—+)
@D

(W] + =) (+ = [¥) = (] = +) (= + [¥)
=(¢| My ® Mpl|y).

3.5 All pure entangled states of two qubits violate CHSH
inequality

The general state of two qubits can be written in the Schmidt decomposition

[4) = cos(a) [00) +sin(a) [11), a€ [0, 7], (36)
where we define |0) = <(1)) and |1) = (g)

Let us consider measurements in the XZ plane:

My = sin(ag).0, + cos(ag).0,, Mp = sin(by).0, + cos(br).o. (37)

12



Substitute into , the expectation value is:

E(aj,by) =sin(ax) sin(bp) (|0, @ 0, |¢) + sin(ax) cos(br) (¥]o, @ o.]ih)+
cos(ag ) sin(bp ) (W|o, @ o.|v) + cos(ak) cos(by)(Y]o, @ a,|1).

(38)
From the Schmidt decomposition,
(Yloz ® ou]tp) = sin(2a),  (Ylo, ® 0.:]¢)) =0, (39)
(Vlo. @ ou]ih) =0,  (Plo, ®o.|th) = 1.
Substitute (39)) into , the expectation value is now:
E(aj,br) = cos(ak) cos(by) + sin(2a) sin(ag ) sin(by ). (40)

Substitute into the left-hand side of the CHSH inequality in Eq. ,
S =cos(ag)[cos(by) + cos(b],)] + cos(al)[cos(br) — cos(b)]+
sin(2a){sin(ax)[sin(br) + sin(b})] + sin(ay )[sin(br,) — sin(b})]}.

We note that this can be expressed in the form of four vectors. The vectors

(41)

1 = (cos(ak),sin(ak)),
vy = (cos(aly), sin(a’)), (42)
01 = (cos(by) + cos(b},), sin(2a)[sin(by,) + sin(b})]),
Uy = (cos(br) — cos(b}), sin(2a)[sin(br) — sin(b})])
Hence,
S = .4, + GotBa. (43)

The sum of dot products of vectors is less than or equal to the sum of mag-

nitude of vectors:
S = [vi||wi] cos(a) + [03|[ws| cos(ar) < |oi|wi| + [va][wh], (44)

and this bound can be achieved as v; and v3 are arbitrary unit vectors, so

they can always be put parallel to w; and w;. We have:

S = |v1||wy| + |v3]|ws| :\/[cos(bL) + cos(b))]% + sin2(2a)[sin(bL) + sin(b) )2+

\/[cos(bL) — cos(b})]2 + sin?(2a)[sin(by) — sin(})]2.
(45)

13



sin(by)

1+ cos(br))?

by,

Figure 3: Graph of right-hand side of against by,.

We can choose a starting point of measurement from anywhere, so we let

b = 0 without loss of generality.

S = |v1||wi| + |03]]ws] :\/[1 + cos(b})]2 + sin?(2a) sin® (b)) +

(46)
V1L = cos(by)]2 + sin® (2a) sin’ ().
This can be expressed in the form of the following two vectors:
7= (1,sin*(20)), ¥ = ((14 cos(by))?, sin*(bz)). (47)

For the dot product of these two vectors to have the greatest value, they
must be aligned parallel to each other, in other words

sin?(by)

sin?(2a) = [+ cos(b) 2

(48)

From Fig. [3} the graph is continuous in the range from 0 to 1 on the y-axis.
This means that there is always a by that solves the equation. Substitute

14



sin?(by) sin?(by)

F /(=1 + cos(b))? + ——m—
\‘ ¢ (1 + cos(br))?

“:I:l +cos(bp))? + ——m8——
\‘ L (1 + cos(br))?

28

26

22

by,

Figure 4: Graph of right-hand side of against by,.

into (46)), we get:

sin?(by)

S = [ ]| + |v3] ] =\/ (L cosbo)* + A cosbr))?

(49)
sin®(by)

\/<_1 + cos(br))? + m.

We need to check by, from the range 0 to 7 since the range of a is from 0

to 7. From Fig. 4, we see that is always greater than 2 in this range.
Therefore, CHSH inequality is violated for all bi-qubit entangled pure states.

3.6 Restricted local hidden variable model

We have shown that all entangled pure states violate a Bell inequality and
that all non-entangled states satisfy Bell inequalities. Here, we will like to ask
if restricting local hidden variable models allows even non-entangled states
to violate analog of Bell inequality.

15



Case | ay by b_
1 +r, | £1 | £rp
2 +ry | £rp | £1

Table 1: Measurement results

As the simplest case, we consider a source which sends one bit to Alice
and one bit to Bob. Let the bit sent to Alice be r4 = £1 and that to Bob
be rg = £1. Alice can choose between two settings, © = +1 and Bob can
choose between two settings, y = £1. The measurement results of Alice can
be calculated using one of four functions a,(r4) and similarly for Bob b,(rp):

ay(ra) = £1,£ra, by(rp) = %1, £rp. (50)
The expectation value is:

E,, = Z azbyP(az, by)

ag by
= Z = a,(ra)by(rp)Play(ra) = a,by(rg) =blra,r5).P(ra,p)
rA,7B,0,b
= a,b,.
(51)
Thus,
E,, = (£lor£ry).(£lor £rp). (52)
Consider only the correlation functions that satisfy:
Ei #+1, E, #=+1, E #E,_ #-L,. (53)

The only non-trivial choices of functions a,(r4) and b,(rp) are gathered in
Table [
In case 1, the result of b, is fixed at 1. We obtain:

E++ = j:m, E+_ = :tT‘A'I"B. (54)
In case 2, the result of b_ is fixed at 1. We obtain:

E++ - :l:TATB, E+_ - :l:m (55)
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The probability in terms of function of results of Alice and Bob is:

1
P(ra,rg) = 1(1 + 14l + 1T +rarpErp) > 0. (56)
By setting r4 = +1 and rg = +1, r4 = +1 and rg = —1, r4, = —1 and
rg =41, r4 = —1 and rg = —1, we get the four equations respectively.

I+ Ey+T5+ E4- 20,
l+E —Tp—E4 >0,
l-Ei i +7p— E4- >0,
1-E. —T5+E,_ >0

(57)

This will mean that the two correlation functions E,, and E,_ cannot be
obtained by measuring particles which carry only one bit of hidden variable
each.

4 Conclusion

In summary, I have reviewed the argument that the results of all possible
measurements on non-entangled states will always satisfy Bell inequalities.
I have also proven that all pure entangled states of two qubits violate the
CHSH inequality, where this statement is known as Gisin’s theorem.

An interesting future research direction is to consider hidden variable
models with somewhat restricted hidden variables. For example, we could
allow only finite number of bits to be carried as hidden variables. In such
cases, it is plausible that even non-entangled quantum states will violate an

analog of Bell inequalities. Last section describes first steps in this direction.
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