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Abstract

I discuss the method to construct a complete probability distribution de-
scribing the likelihood of all possible outcomes in an experiment even those
unmeasured in a single experimental run. The experiment consists of mea-
suring a system at two different places which are space-like separated. The
existence of all the outcomes in each run of the experiment and no signalling
condition as well as freedom of the experimenters to choose a setting is as-
sumed. In addition, different instances of no signalling condition are used
to derive two different inequalities, one being the Bell’s/CHSH inequality. A
general method for the derivation of possibly new Bell’s inequalities is briefly
discussed.
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1 Introduction

The notion of reality and determinism could be traced back to classical an-
tiquity where ancient philosophers started to ponder and question on the
existence of entities and causal relationships between them. Those ideas, of
reality and determinism, were embedded in classical physics until the devel-
opment of quantum mechanics in 20th century. Such advancement, however,
was responded with reappraisals, refutations and recognitions among physics
community concerning the preceding classical ideas. Principles of quantum
mechanics, especially of the ubiquitous Copenhagen interpretation, funda-
mentally challenge the classical ideas of determinism as well as that of reality.
This nature of the new theory encouraged the proponents of determinism and
classical realism to devise a way to reconcile the haphazard world of quantum
mechanics with that of deterministic macroscopic world. Albert Einstein, a
proponent of causality and objective reality, and other prominent figures such
as John von Neumann and David Bohm, in their effort in this reconcilation,
hypothesized a possible local deterministic interpretation of quantum me-
chanics where the seemingly random results from the measurements are, in
fact, influenced by a variable unaccessible at least to the experimenters and
not present in quantum formalism. The name hidden variable was given
to those variables which preserve realism as well as maintain determinism.
Earlier hypotheses of such hidden variable theories could be traced as far
back as 1927 to pilot wave theory presented by Louis de Broglie. In 1935,
Einstein with two coauthors published a paper [1] in which they pointed out
that quantum mechanics is incomplete based on the idea of objective real-
ity. Their argument is most widely known as EPR paradox. There were
counter arguments and critiques on EPR’s assumption of objective reality
most notably by Niels Bohr [2]. Many in the physics community, for a fair
reason, were not convinced of the reality assumption while there were other
who believed that since the final observation could be arrived by adopting
either of these viewpoints, it is a matter of preference which interpretation
is taken [3].

But in 1964, a breakthrough occured. John Stewart Bell presented a
paper [4] in which he discusses that assuming the objective reality as EPR
did and hence accepting that quantum mechanics is incomplete, one could
introduce the hypothetical hidden variables whose purpose is to restore the
completeness of quantum theory. If this step is taken, he shows that the
statistical predictions i.e. the average values of different combinations of
observables is different from the predictions of quantum mechanics. In his
proof, Bell made use of another interesting assumption of locality. It essen-
tially states that the situation of one system is independent of the actions
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done on the other system which is spatially separated from the first system.
Employing those two assumptions, he was able to show that the expecta-
tion value given by hidden variable theory is different from that of quantum
mechanics. Thus if we are to assume existence of a hidden variable theory
which yields the same statistical predictions as quantum mechianics, then in
such theory actions on one system must have an immediate consequence on
another system i.e. nonlocality must be true. Such nonlocality however is
incompatible with special relativity. Bell later published another paper [5]
where he proved a more general result now known as Bell/CHSH inequalities.
Various experiments have been performed since then and are found to be vio-
lating the Bell inequalities [3] and are in good agreement with the predictions
from quantum mechanics. One interesting aspect of Bell’s inequalities is the
different assumptions in deriving it. Over time, different assumptions were
made to derive either Bell’s inequality or joint probability distribution of
all observables. Some of those assumptions such as locality, local causality,
factorisibility of joint probability distribution and completeness condition [6]
could be read in a meticulous review by Wiseman [7]. Proof that existence of
a joint probability distribution of all observables is equivalent to the validity
of Bell’s inequality was presented in a paper by Arthur Fine [8].

The present paper also shows the validity of Bell’s inequality by deriving
a joint probability distribution based on three fair assumptions. But before
we study the derivation, it is illuminating to read the mathematical deriva-
tions of Bell’s inequalities and thus different assumptions behind it. Thus the
second section of this paper is devoted to the derivations of Bell’s inequality
and instances of violations of such inequalities. Assumptions such as local-
ity and local causality will be treated as mathematical properties in such
derivations. In the third section, I present a new proof on the existence of
joint probability distribution based on no-signalling principle and other two
assumptions. The last section focuses on the possible further investigation
from the current one.

2 A review on EPR paradox, derivations of

Bell’s inequalities and analysis on their vi-

olations

2.1 EPR paradox

Based on the hidden variable hypothesis, in 1935, Albert Einstein, Boris
Podolsky and Nathan Rosen submitted a paper titled ”Can Quantum-Mechanical
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Description of Physical Reality Be Considered Complete?” to Physical Re-
view journal and it was published in May within the same year. In that paper,
the authors concluded that the description of reality given by quantum me-
chanics is not complete for its negation leads to a contradiction. In their ar-
gument, the authors employed a major premises and a minor premise. They
also proposed a criterion for identifying reality. I shall list those premises and
dissect on their argument. Before we delve into the premises behind Einstein
et al’s paper (from now on refered to as EPR’s paper and the authors as
EPR), I would like to point out an assumption taken by EPR, namely the
assumption on objective reality. We shall not pursue the justification behind
this assumption but rather we shall interpret it as the existence of properties
of a system regardless of any measurement.

The major premise put forward by EPR is a necessary requirement for a
complete theory.

every element of the physical reality must have a counter-part
in the physical theory

One method for determining element of the physical reality as suggested by
EPR is:

The elements of the physical reality cannot be determined by
a priori philosophical considerations, but must be found by an
appeal to results of experiments and measurements.”

Here I believe EPR intended to mean all observable properties of a system
whether they are either simultaneously or asynchronously observed. The
criterion for identifying reality proposed by EPR is,

If, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the value of a
physical quantity, then there exists an element of physical reality
corresponding to this physical quantity.

This criterion was utilized in the second part of EPR’s paper. The minor
premise implemented by EPR is that quantum mechanical predictions, so
far, are correct and in quantum mechanics, if two operators corresponding
to two physical quantites do not commute, then those quantities cannot be
measured simultaneously. EPR’s conclusion is as follow:

(1) the quantum mechanical description of reality given by the
wave function is not complete or (2) when the operators corre-
sponding to two physical quantities do not commute the two quan-
tites cannot have simultaneous reality.
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Now the validity of EPR’s argument will be discussed. EPR first as-
sumed the second statement of the conclusion is false. They assumed it’s the
case that if two operators corresponding to two physical quantities do not
commute, then the two quantities can have simultaneous reality. They also
assumed the negation of the first statement of their conclusion: the quan-
tum mechanical description of reality given by the wave function is complete.
The latter assumption enables them to invoke the necessary requirement for
a complete theory to conclude that those two quantities with simultaneous
reality must have a counter-part in the physical theory which in this case is
quantum mechanics. Moreover those counter-parts must exist simultaneously
too. But this contradicts their minor premise and since it is improbable for
the premises to be true and the conclusion false, their argument is deemed
valid.

In the second part of EPR’s paper, the authors demonstrated that the
first statement of the conclusion must be true for its negation leads to the
negation of the second statement of the conclusion and they have already
shown the conclusion to be valid. Begin with the assumption that the quan-
tum mechanical description of reality given by the wave function is complete.
Let us consider a quantum system which splits into two subsystem, system
I and system II. The system can be represented as

Ψ(x1, x2) =
∞∑
n=1

ψn(x2)un(x1), (2.1)

where u1(x1), u2(x1), . . . are eigenfunctions of some physical quantity A in
system I and similarly ψ1(x2), ψ2(x2), . . . are eigenfunctions of quantity B
in system II. Now it is possible for the system I and II to possess another
physical quantities, say P and Q with eigenfunctions v1(x1), v2(x1), . . . and
φ1(x2), φ2(x2), . . . respectively. In that case, the whole system can be repre-
sented as

Ψ(x1, x2) =
∞∑
n=1

φn(x2)vn(x1), (2.2)

We are assuming that quantities A and B are of the same nature (e.g. po-
sition) and so are quantities P and Q (e.g. momentum). Now it is possible,
as EPR had demonstrated, that the quantities on system I, A and P are
incompatible to each other—they can’t be simultaneously measured. From
the similar nature, quantities B and P are thus incompatible to each other.
Now, if one were to make a measurement of A and obtains say am, the eigen-
value of the function um(x1), then one immediately knows that the system
is left in the state,

Φ(x1, x2) = ψm(x2)um(x1). (2.3)
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On the other hand, if one instead chooses to measure P and obtains pk, the
eigenvalue of the function vk(x1), then immediately after the system is in the
state,

Φ(x1, x2) = φk(x2)vk(x1). (2.4)

Now we can see that on system II, both the eigenfunction ψm(x2) and φk(x2)
belong to the same reality. But as we have mentioned, they are not com-
patible to each other. Thus, the negation of the first condition in the EPR’s
conclusion above leads to the negation of the other condition. Since the con-
clusion itself is proven to be valid and assuming the truth of the premises
above, the conclusion must be true. Hence, it must be the case that the
quantum mechanical description of reality given by the wave function is not
complete.

Finally, EPR argued that why their criterion of reality is a reasonable
assumption. They stated assuming it is the case that

two or more physical quantities can be regarded as simulta-
neous elements of reality only when they can be simultaneously
measured or predicted.

one could argue the physical quantities from two incompatible operators can-
not have simultaneous element of reality since they cannot be measured si-
multaneously. But EPR debunked that in such case, the reality of those
physical quantites then depends on the measurment on the other subsystem
which is forbidden according to their no interaction assumption. In the con-
clusion of the paper, the authors stated that although their argument shows
quantum mechanics is not a complete theory, the question of whether it could
be completed or not is left open. However, they believed that a complete
theory is possible.

2.2 Possiblility of hidden variable interpretation in a
simple quantum system

Before we derive the Bell’s inequality, we should examine whether it is possi-
ble to have a simple quantum system explained by a hidden variable model.
The answer is positive for a two state quantum system. We present here a
simple LHV model for a spin-1

2
particle. Assume that there exists λ ∈ [0, 1]

which imposes deterministic results on the measurements of all spin directions
of the particle. Associate an observable B̂ with a particular measurment, in
this case spin direction of the particle. We choose the result of such measure-
ment to be either +1 or −1 corresponding to spin up or spin down direction.
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From quantum mechanics, we know that we could associate any mixed state
ρ with a Bloch vector ~s and any observable B̂ with a Bloch vector ~m so that,

ρ =
1

2
(1 + ~s · ~σ) (2.5)

B̂ =
1

2
(1 + ~m · ~σ) (2.6)

The average of the measurement B̂ then is given by

QM〈B̂〉ρ = ~m · ~s. (2.7)

We define for the measurement result b as follows:

b =

{
+1 if λ ∈ [0, λ̄],

−1 if λ ∈ [λ̄, 1]
where λ̄ =

1

2
(1 + ~s · ~m) (2.8)

Then the probability of obtaining result +1 is

P (b = +1) =

∫ λ̄

0

dλ =
1

2
(1 + ~s · ~m) (2.9)

Similarly,

P (b = −1) =

∫ 1

λ̄

dλ =
1

2
(1− ~s · ~m). (2.10)

Average value of the measurement,

LHV 〈B̂〉ρ =
∑

i=+1,−1

P (b = i) = ~s · ~m = QM〈B̂〉ρ. (2.11)

We have shown here one LHV model that agrees with QM results on aver-
age for the measurement on a single spin- 1

2
particle and which completes

quantum mechanics in a sense that in every experimental run, the outcome
is predetermined (just as in classical physics). Notice that in a particular
run of the experiment, we have no knowledge about the value of λ hence the
name ”hidden variable” is given and we only need one variable in the model.

2.3 Bell’s 1964 Paper

EPR’s argument is sound provided that we accept the assumptions in it to
be true. Indeed, there was at least one critique on those assumptions put
forward by Niels Bohr. But in 1964, a paper titled ”On The Einstein Podol-
sky Rosen Paradox” by John Stewart Bell was published in Physics and in
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Figure 1: Schematic of the apparatus used in the derivation of Bell’s inequal-
ity. The source sends out two entangled particles in the opposite directions
towards the detectors. The observers can choose any setting at place A and
B. After the settings ~a and ~b are chosen, the results A~a and B~b are sent out
to the central register for the calculation of correlations.

this paper, the author showed that by assuming that quantum mechanics is
not complete and consequently thus adopting quantities called hidden vari-
ables whose existence is to restore locality and determinism to the theory,
the resultant statistical predictions by such theory could not be reconciled
with that from quantum mechanis. Bell used the example by Bohm and
Aharonov [9] on the explanation of EPR paradox using a pair of entangled
spin-1

2
particles. First, he introduced hidden variable λ whose purpose is as

mentioned to restore realism and determinism to the experimental outcomes.
Furthermore, he declared that the results of an experiment say A and B are
influenced by λ in the following way:

A(~a, λ) = ±1, B(~b, λ) = ±1. (2.12)

where ~a and ~b are some unit vectors corresponding to the settings chosen by
the experimenters in a spin measurements on a pair of entangled electrons.
Here we are assuming the unit of spin to be ~

2
. The vital assumption (2.12),

he claimed, is that the result B on one side is not affected by setting ~a and
similarly for A. This is the assumption which later is termed locality but
it essentially encompasses the local casuality as envisaged by Einstein. But
note that due to λ results A and B could still be related in some way and
hence are not independent in general. Although the results of the experiment
are determined by the hidden varaible λ and settings ~a and ~b, the hidden
variables themselves are considered to be probabilistic in the paper which
can be seen by the introduction of probability distribution ρ(λ) on λ. The
expectation value of the product of the results is then

E(~a,~b) =

∫
dλρ(λ)A(~a, λ)B(~b, λ) (2.13)
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which should be equal to the quantum mechanical result

< ~σ · ~a ~σ ·~b >= −~a ·~b, (2.14)

where we assumed the spins are described by the singlet state. But as the
author showed, they are not equal.

2.3.1 The Bell’s inequality

I shall present the first part of the Bell’s Theorem where he showed that the
expectation value in (2.13) is not equal to the quantum mechanical expec-
tation value (2.14). Assuming a normalized probability distribution ρ(λ) we
have, ∫

dλ ρ(λ) = 1. (2.15)

Moreover, for a spin entangled pair of particles in the singlet state,

−A(~b, λ) = B(~b, λ), (2.16)

i.e. their spins are anti-parallel to each other if measured along the same
direction. In that case, equation (2.13) becomes

E(~a,~b) = −
∫
dλ ρ(λ)A(~a, λ)A(~b, λ). (2.17)

If on one side, the experimenter chooses to measure the spin in another
direction, say ~c, then the difference in the expectation values between two
scenarios is

E(~a,~b)− E(~a,~c) = −
∫
dλ ρ(λ)[A(~a, λ)A(~b, λ)− A(~a, λ)A(~c, λ)]

=

∫
dλ ρ(λ)A(~a, λ)A(~b, λ)[A(~b, λ)A(~c, λ)− 1]

(2.18)

where we use the property that

A(~b, λ) · A(~b, λ) = 1. (2.19)

From equation (2.18), we can deduce that

|E(~a,~b)− E(~a,~c)| ≤
∫
dλρ(λ)[1− A(~b, λ)A(~c, λ)]. (2.20)

Recognizing the second term in the sum on the right is E(~b,~c), we arrive at

1 + E(~b,~c) ≥ |E(~a,~b)− E(~a,~c)|. (2.21)

The above is the Bell’s inequality. In the original derivation, Bell used P (~a,~b)

instead of E(~a,~b) to represent the expectation value but in this paper, we

will use E(~a,~b) to differentiate it from the probability.
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2.3.2 Violation of Bell’s inequality

Now we proceed to show that there is a certain configuration of the settings on
A and B which makes (2.21) invalid. In Bell’s original derivation, he provided
a counterexample which violates the above inequality. Here, we shall derive a
relation between different settings which violates the Bell’s inequality. First,
assume that the expectation value given by the Bell’s Theorem is the same
as the quantum mechanical expectation value,

E(â, b̂) = 〈 ~σ1 · â ~σ2 · b̂〉 = −â · b̂. (2.22)

Then using the Bell’s inequality (2.21), we arrive at

1− b̂ · ĉ ≥ |â · (b̂− ĉ)|. (2.23)

Since
|â| = |b̂| = |ĉ| = 1, (2.24)

we write

â · b̂ = cos(θ), â · ĉ = cos(φ), b̂ · ĉ = cos(φ− θ) (2.25)

where we have assumed for simplicity that â,b̂ and ĉ are coplanar. With this
the inequality (2.23) is now

1− cos(φ− θ) ≥ |cos(θ)− cos(φ)|. (2.26)

In particular,
cos(θ)− cos(φ) ≤ 1− cos(φ− θ). (2.27)

Using the trigonometric identities,

−2 sin(
θ + φ

2
) sin(

θ − φ
2

) ≤ 1− (1− 2 sin2(
φ− θ

2
)) (2.28)

−2 sin(
θ + φ

2
) sin(

θ − φ
2

) ≤ 2 sin2(
φ− θ

2
) (2.29)

sin2(
φ− θ

2
) + sin(

θ + φ

2
) sin(

θ − φ
2

) ≥ 0 (2.30)

2 sin(
θ − φ

2
)[

sin( θ+φ
2

) + sin( θ−φ
2

)

2
] ≥ 0 (2.31)

finally we arrive at

sin(
θ

2
) cos(

φ

2
) sin(

θ − φ
2

) ≥ 0. (2.32)

Let us interpret the above inequality and possible violations of it. For sim-
plicity, let us agree upon a reasonable assumption that 0 ≤ φ, θ ≤ π. We
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then have 1 ≥ sin( θ
2
) ≥ 0 and 1 ≥ cos(φ

2
) ≥ 0 and hence for the left hand side

of the inequality to be negative, we need sin( θ−φ
2

) < 0. Hence, it must be
the case that 0 ≤ θ < φ ≤ π for any violation to occur. In fact, the above are
exactly the cases put forward by Bell [4] and Clauser and Shimony [3] in their
respective papers. In Bell’s paper, â and ĉ are perpendicular while b̂ bisects
the angle between them. Similarly, in Clauser et al. paper, â and ĉ make an
angle of 2π/3 while b̂ bisects it. Here we have arrived at a relation between θ
and φ for the violation of Bell’s inequality. Note that we restrict our analysis
to the case where the vectors are coplanar. A generalized analysis I hope is
possible.

2.4 Bell’s inequality of 1971/CHSH inequality

The above Bell’s inequality was used to theoretically predict the incompa-
bility between Quantum Mechanics and local hidden variable theory. To
experimentally verify this violation, however, is difficult if we were to use
the inequality (2.21) since it relies on a perfect correlation of spin between
entangled particles i.e. the condition (2.16). In an actual experiment, such
correlation could hardly happen. This difficulty leads to the generalization
of Bell’s inequality by Clauser, Horne, Shimony and Holt [10]. Bell later also
derived a generalized inequality similar to that of CHSH [5]. We no longer
assume a perfect correlation (2.16). Condition (2.13) remains the same. Pre-
ferring a more general derivation, we take into account the hidden variable
contribution by the instruments used to measure the systems. Averaging
over these instrument variables,

E(~a,~b) =

∫
dλ ρ(λ)Ā(~a, λ)B̄(~b, λ), (2.33)

where Ā and B̄ are averages over instrument variables and ~a and ~b represent
setting chosen by observers. Instead of (2.12), we now have,

|Ā| ≤ 1, |B̄| ≤ 1. (2.34)

Also in the case where one or both of the measuring devices fails to measure
the particles, we could simply assign value 0 to A and B for that run. Let ~a′
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and ~b′ be alternative settings of instruments. Then

E(~a,~b)− E(~a, ~b′) =

∫
dλ ρ(λ)[Ā(~a, λ)B̄(~b, λ)− Ā(~a, λ)B̄(~b′, λ)]

=

∫
dλ ρ(λ)[Ā(~a, λ)B̄(~b, λ)(1± Ā(~a′, λ)B̄(~b′, λ))]−

−
∫
dλ ρ(λ)[Ā(~a, λ)B̄(~b′, λ)(1± Ā(~a′, λ)B̄(~b, λ))].

(2.35)

Using two inequalities (2.34) above,

|E(~a,~b)− E(~a, ~b′)| ≤
∫
dλ ρ(λ)(1± Ā(~a′, λ)B̄(~b′, λ))

+

∫
dλ ρ(λ)(1± Ā(~a′, λ)B̄(~b, λ))

(2.36)

which leads to

|E(~a,~b)− E(~a, ~b′)| ≤ 2± (E(~a′, ~b′) + E(~a′,~b)), (2.37)

and finally to,

|E(~a,~b)− E(~a, ~b′)|+ |E(~a′, ~b′) + E(~a′,~b)| ≤ 2. (2.38)

By permuting the minus sign, we can obtain three more inequalities. All
the inequalities obtained are collectively called CHSH inequalities. We shall
briefly state the violation of CHSH inequality as the literature contains am-
ple examples. The quantum mechanical maximum of the L.H.S of CHSH
inequality can be calculated to be 2

√
2 [11] in clear violation of the inequal-

ity.

2.5 Different assumptions in the derivation of Bell’s
inequalities

It is noteworthy that different assumptions may be used in derivation of
the Bell’s inequalities. For example, while the derivation of Bell’s 1964 in-
equalities rests on the assumption of locality and determinism, Bell’s 1976
inequalities are based on the assumption of local causality [7]. In order to
avoid a possible confusion and recognize where our assumption in a subse-
quent proof lies, I will present a brief review on different assumptions behind
the derivation of Bell’s inequalities. To ensure a lucid interpretation of each
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assumption, we will utilize mathematical symbols in our translation. In the
original derivations, Bell assigned ρ(λ) to indicate that hidden variables λ
are endowed with a probability distribution ρ(λ). Hence it is acceptable to
use P (A,B|a, b, λ) to denote the probability of A and B having some values
(usually ±1) given the settings a and b take some values (usually {1, 2})
and given a λ from the set of all hidden variables, Λ. With this convention,
determinism—which states that the outcomes of an experiment are predeter-
mined by λ—could be translated to P (A,B|a, b, λ) being either 1 or 0. This
interpretation then can be reconciled with what is stated in (2.12). Next we
discuss the assumption on locality. It states the outcome B is independent
of what is being done at the site of outcome A. In our interpretation,

P (B|a, b, λ) = P (B|b, λ) (2.39)

P (A|a, b, λ) = P (A|a, λ). (2.40)

Another assumption we wish to address is that of local causality. It essentially
states the statistical independence of outcome B from both the outcome A
and the setting used to obtain outcome A, a. In other word,

P (B|A, a, b, λ) = P (B|b, λ). (2.41)

Note that the same condition applies to A as well i.e. P (A|B, a, b, λ) =
P (A|a, λ). The assumption in our proof involves considering probabilities of
the form P (B1, B2|a) where B1 and B2 are outcomes at B’s side. As we can
see, these assumptions are inherently different from the previous ones.

3 The proof on the existence of complete joint

probability distribution under no signalling

assumption

Before I present the main proof, I would like to explain the no signalling con-
dition that will be adopted in the proof. No signalling condition essentially
states that the experimental setting of one party is statistically independent
of the results at the other party. Although light is the fastest way of in-
formation transfer, we need not necessarily assume that signalling is limited
to light transmission. The no signalling condition is fundamentally different
from the local causality condition employed in CHSH inequality derivation.
In the latter case, it is assumed that every result of observation is indepen-
dent of the setting chosen on the other side. In contrast, it is assumed, in
the current case, that the statistics—the probability or expectation value of
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obtaining certain sets of results—obtained on one side is independent of the
setting chosen at other side. An instance of statiscal signalling is discussed
in a paper by Valentini [12].

3.1 The proof

We consider a scenario where there are two observers A and B, spacelike
separated, performing measurements on entangled particles emitted by a
common source. We do not assume that all possible results of the experiment
exist at both experimenters. Instead, it is sufficient to assume that such
results exist only at one observer, say, at B (see Fig 2) side and it takes
the form of joint probability distribution over all the results/outcomes. In

other word, we assume that P (~b) exists where ~b ≡ (b1, b2, . . . , bn) and bi with
i = 1, 2, . . . , n is the result under the setting i. In contradistinction, no
assumption is made about A’s side. The setting there is denoted by x and
the outcome in a particular experimental run by ax. Altogether in a single
experimental run, the LHV theory we consider specifies P (ax, b1, b2, . . . , bn).
The results could take a set of m different values.

The second important assumption is that of no-signalling mentioned above.
We assume that results at B and subsequently the probability distribution
P (~b) is statistically independent of the settings at A. No signalling assump-
tion, in our proof, takes the form,

P (~b|x) = P (~b) (3.1)

where x is the setting on A’s side i.e. x = 1, 2, . . . , n. The last assumption
which we describe the freedom of choice states that the actions of both ob-
servers, in this particular case the settings, are statistically independent of
each other, and of the experimental probabilities. Now we proceed to the
proof. By the last assumption,

P (ax,~b) ≡ P (a,~b|x). (3.2)

It follows that ∑
ax

P (ax,~b) =
∑
a

P (a,~b|x) = P (~b|x) = P (~b). (3.3)

The last equality is justified by our second assumption (3.1). We now have
all the components necessary to show that the joint probability distribution
for all the observers exists i.e. P (~a,~b) exists as a necessary consequence of
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Figure 2: Diagram of the assumptions behind the derivation of a complete
probability distribution. The source sends out predetermined results ~b ≡
b1, b2, . . . , bn towards place B. The choice of a particular ~b is based on the
probability distribution P (~b). Observer at B chooses a setting y and obtains
the result by. Similarly, observer at A chooses a setting x and obtains the
result ax. Note that no realism of the outcomes is assumed on A’s side thus
creating a semi-realistic system.

our assumptions. One way to construct the required probability distribution
is to define

P (~a,~b) ≡
∏n

x=1 P (ax,~b)

P (~b)n−1
. (3.4)

Then it is straightforward to show that this probability distribution returns
appropriate experimental probabilities—the probabilities accessible by the
experimenters at the end of the experiment. Clearly, this distribution is non-
negative for all its constituents are non-negative. Next, we check whether it
is possible to obtain experimental probabilities from this distribution. For
example, if we want to obtain the experimental probability for ak and bl
where k, l ∈ {1, 2, . . . , n}, we sum (3.4) over all other outcomes (excluding
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ak and bl) denoted by ~ak̄,~bl̄. This gives

∑
~ak̄,
~bl̄

∏n
x=1 P (ax,~b)

P (~b)n−1
=

∑
~bl̄

∏n
x=1

∑
ax,x 6=k P (ax,~b)

P (~b)n−1

=
∑
~bl̄

P (ak,~b)

=
∑
~bl̄

P (a,~b|k)

= P (a, bl|k) = P (a, b|k, l).

(3.5)

From the above, it is also straightforward to show that this distribution sums
up to unity:

∑
~a,~b

∏n
x=1 P (ax,~b)

P (~b)n−1
=

∑
~ak,~bl

∑
~ak̄,
~bl̄

∏n
x=1 P (ax,~b)

P (~b)n−1

=
∑
~ak,~bl

P (a, b|k, l)

=
∑
~a,~b

P (a, b|k, l) = 1.

(3.6)

Hence, the distribution so obtained is indeed a normalized probability distri-
bution which yields appropriate experimental probabilities as marginals.

Note that in this proof, we need only to assume that the results exist
on one side and we could show the existence of probability distribution for
all results. This is different from the usual assumptions in derivation of
Bell’s inequality where existence of results is assumed on both sides. One
might ask the connection between this probability distribution constructed
and the Bell/CHSH inequalities. The equivalent relation between existence
of a complete probability distribution and validity of CHSH inequalities was
proved in a paper by Arthur Fine [8]. A subset of the paper shows the
equivalence realtion between the existences mentioned previously and that of
a deterministic hidden-variable model. Moreover, it provides a way to derive
the CHSH inequalities given the complete probability distribution. Let us
now analyze the results from our proof. The first thing we may conclude is
on the pervasiveness of realism. We start our proof with the assumption that
out of two parties, realism, hence predefined results of the experiment, exists
only on one side. But this eventually leads us to the deterministic hidden
variable model where realism is assumed on both sides. In fact, this leads
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us to the determinism of the results. The second discussion might be on our
assumption of joint probability distribution on all the results at one side i.e.
P (~b). While the uniqueness—whether summation over different x in (3.3)

would result in different P (~b)—of such distribution is questioned [13], it is
clear that as soon as we define (3.2), the uniqueness follows from (3.3).

3.2 CHSH inequality

In the previous section, we showed the existence of joint probability distri-
bution assuming the no-signalling condition P (~b|x) = P (~b) and stated that
it is related to the validity of CHSH inequality throught Arthur Fine’s pa-
per. We may ask ourselves whether we could derive CHSH inequality from
the no signalling condition. And the answer is promising. First, we restrict
ourselves to the analysis of two-outcomes case. Then we choose the no sig-
nalling condition from which we could derive CHSH inequality. The relevant
no signalling condition turns out to be

P (b1 = b2|x = 1)− P (b1 = b2|x = 2) = 0. (3.7)

Assume the other observer, A, has already made measurement so that the
outcome is fixed and we can write P (b1 = b2|x = i ∈ {1, 2}) = P (aib1 = aib2).
All the outcomes are assumed dichotomic (±1) hence their products are also
dichotomic. We first define vi ≡ aib1 and wi ≡ aib2 and then define the
nested correlation:

εi = 〈vi · wi〉 = P (vi = wi)− P (vi 6= wi)

= 2P (vi = wi)− 1.
(3.8)

Hence,

P (v = w) =
1

2
(1 + εi). (3.9)

Substituting (3.9) in (3.7),

ε2 − ε1 = 0. (3.10)

Notice that v, w ∈ {+1,−1} and hence we can devise the relation

vi · wi = 1− |vi − wi| = −1 + |vi + wi|. (3.11)

The nested correlation thus becomes

〈vi · wi〉 = 1− |〈vi − wi〉|
≤ 1− |〈vi〉 − 〈wi〉|.

〈vi · wi〉 = −1 + |〈vi + wi〉|
≥ −1 + |〈vi〉+ 〈wi〉|.

(3.12)
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Concluding,

−1 + |〈vi〉+ 〈wi〉| ≤ 〈vi · wi〉 ≤ 1− |〈vi〉 − 〈wi〉|. (3.13)

Recognizing εi to be the same as 〈vi · wi〉, correlation Ei1 with 〈vi〉 and Ei2
with 〈wi〉:

−1 + |Ei1 + Ei2| ≤ εi ≤ 1− |Ei1 − Ei2|. (3.14)

We then obtain the upper bounds,

ε2 ≤ 1− |E21 − E22|, (3.15)

−ε1 ≤ 1− |E11 + E12|. (3.16)

We proceed as:

2− |E11 + E12| − |E21 − E22| ≥ ε2 − ε1, (3.17)

|E11 + E12| − |E21 − E22| ≤ 2. by (3.10) (3.18)

The last inequality is the CHSH inequality. So, we could indeed obtain CHSH
inequalities from assumption of a specific no-signalling condition.

3.3 Zohren-Gill inequality

The previous finding encourages us to derive more inequalities assuming dif-
ferent no signalling condition. We now consider the probability distribution
of either b1 > b2 or b2 > b1. Again assuming bipartite model but with
observables of d outcomes. No signalling condition then reads

P (b2 < b1|x = 1)− P (b2 < b1|x = 2) = 0. (3.19)

We then find the upper bound of P (b2 < b1|x = 1) using the inclusion relation
(see Fig 3a) {b2 ≥ a1} ∩ {a1 ≥ b1} ⊂ {b2 ≥ b1}.

By identifying the complement of the inclusion relation, we obtain the
probability relation:

P (b2 < a1) + P (a1 < b1) > P (b2 < b1) (3.20)

P (b2 < a1) + P (a1 < b1) > P (b2 < b1|x = 1) (3.21)

where we obtain (3.21) from dividing (3.20) by P (x = 1) and then using the
freedom of choice assumption P (bk < a1) = P (bk < a1|x = 1). The lower
bound for P (b2 < b1|x = 2) is obtained in a similar manner but using the
inclusion {a2 ≥ b2} ∩ {b2 ≥ b1} ⊂ {a2 ≥ b1} instead (Fig 3b). The result is:

P (a2 < b2) + P (b2 < b1) > P (a2 < b1) (3.22)

P (a2 < b2) + P (b2 < b1|x = 2) > P (a2 < b1) (3.23)
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(a) {b2 ≥ a1} ∩ {a1 ≥ b1} (b) {a2 ≥ b2} ∩ {b2 ≥ b1}

Figure 3: Inclusion relations between b2, b1, a1 and b2, b1, a2. Appropriate set
relations between said variables are formed thereafter a probability measure
is imposed on those relations. Resulting two inequalities are then combined
using the no signalling condition to obtain the required inequality.

where we proceed as in the previous case. Lastly, using (3.19),

P (b2 < a1) + P (a1 < b1) + P (a2 < b2)− P (a2 < b1) > 0 (3.24)

This inequality is known as Zohren-Gill inequality.

20



3.4 Relation between P (~b) and P (f(~b))

With the derivations of two previous inequalities based on different no sig-
nalling assumptions, it is intriguing to find out the relations between the
probability distribution P (~b) and P (f(~b)) where f(~b) is some function on ~b.
The answer seems to be non-trivial. To simplify our analysis, we restrict
ourselves to two-outcomes case. Then from the fact that b1, b2 = ±1, we
could infer that there are only sixteen unique relations between b1 and b2.

In mathematical form, we wish to find whether,

P (b1, b2|x = 1) = P (b1, b2|x = 2) ⇐⇒ P (fk(b1, b2)|x = 1) = P (fk(b1, b2)|x = 2),
(3.25)

where b1 and b2 are the outcomes and fk with k = 1, 2, ..., 16 is a binary
function. We show that the above equivalence indeed is the case. First, for
the ”if” part, we consult some results from information theory. It is known
that, given the mutual information I(A : B) between two variables A and B,

1. I(A : B) ≥ 0

2. Data processing inequality: I(f(A) : B) ≤ I(A : B) and I(A : f(B)) ≤
I(A : B)

3. I(A : B) = 0 ⇐⇒ P (A,B) = P (A)P (B).

Using the last result of the theory together with P (A,B) = P (A|B)P (B),
we deduce that

I(A : B) = 0 ⇐⇒ P (A|B) = P (A). (3.26)

Now using (3.26), we could transform the L.H.S of (3.25) into,

P (b1, b2|x) = P (b1, b2) ⇐⇒ I(b1, b2 : x) = 0. (3.27)

From the second result of the theory, I(fk(b1, b2) : x) ≤ I(b1, b2 : x). This, to-
gether with the first result from the theory, I(fk(b1, b2) : x) ≥ 0, implies that
I(fk(b1, b2) : x) = 0. Hence we conclude that P (fk(b1, b2)|x) = P (fk(b1, b2))
and thus P (fk(b1, b2)|x = 1) = P (fk(b1, b2)|x = 2).
Next, we prove the ”only if” part. We start by assuming that P (b1, b2|x =
1) 6= P (b1, b2|x = 2). This means there exist b̃1 and b̃2 such that pi ≡
P (b̃1, b̃2|x = 1) 6= P (b̃1, b̃2|x = 2) ≡ qi. Let us choose a function fk(b1, b2)
that marks the inputs where pi 6= qi:

fk(b1, b2) =

{
+1 if b1 = b̃1 and b2 = b̃2,

−1 else.
(3.28)
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Then,

P (fk(b̃1, b̃2)|x = 1) = P (fk = +1|x = 1) = pi, (3.29)

where the last equality follows from the fact that fk = +1 implies b1 = b̃1

and b2 = b̃2. Likewise,

P (fk(b̃1, b̃2)|x = 2) = P (fk = +1|x = 2) = qi. (3.30)

But we know that pi 6= qi hence P (fk(b1, b2)|x = 1) 6= P (fk(b1, b2)|x = 2).
We have shown that

P (b1, b2|x = 1) 6= P (b1, b2|x = 2)⇒ ∃fk : P (fk(b1, b2)|x = 1) 6= P (fk(b1, b2)|x = 2).
(3.31)

whose contrapositive is the required ”only if” part hence completing the
proof. In words, no signalling condition holds for the probability distribution
P (b1, b2) if and only if the same condition holds for the probability of the
functions of its arguments i.e. P (f(b1, b2)). Thus different f ’s could be
linked to different Bell’s inequalities.

3.5 General derivation of Bell’s inequalities

The reader might notice that while we could derive different inequalities using
different no signalling condtions, we employed different approaches in such
derivations. It is, however, desirable to formulate a standardized method
where all possible Bell’s inequalities could be derived by a single general
derivation supplied with different no signalling conditions. As in the case of
the derivation of CHSH inequality, we simplify our analysis by assuming two
settings, two outcomes scenario. Since b1 and b2 take only two values (±1),
the number of binary functions on those variables amounts to 16. By figuring
out those functions, we may gain insight into the general derivation of Bell’s
inequalities. Referring to Table 1, function f1 seems trivial. Function f7, on
the other hand, is interesting because its outputs are the same (−1) in the
case where both the inputs are the same. Also when the inputs are different,
the outputs are the same (+1). This, in a sense, is closely related to our
no signalling assumption (3.7). The next interesting function is f3 where we
have the output +1 iff b1 > b2. Similarly f5 represents b2 > b1. Out of the
other functions, f4 and f6 turn out to be the same as b1 and b2 respectively.
The only remaining function is f2 whose form we suspect, when substituted
in a similar no signalling condition as (3.7), will turn out to be identical to
the latter. Nonetheless, investigations are ongoing.
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b1 b2 f1 f2 f3 f4 f5 f6 f7 f8 ... f16

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 ... 1
-1 1 -1 -1 -1 -1 1 1 1 1 ... 1
1 -1 -1 -1 1 1 -1 -1 1 1 ... 1
1 1 -1 1 -1 1 -1 1 -1 1 ... 1

Table 1: Table of outcomes b1, b2 and the binary functions on the outcomes.
There are 16 unique binary functions with f9 onwards are simply negation
of the previous functions.

4 Conclusion

We have provided a way to construct a complete probability distribution
given the condtions of no-signalling, freedom of choice and realism on one
side. Specific no signalling methods are found to be the conditions sufficient
for derivation of a range of Bell’s inequalities. When deriving said inequali-
ties, however, we employ different techniques to achieve it. A much preferred
general program for derivations of inequalities based on no signalling condi-
tion is still required and being investigated.
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