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Abstract

Quantum entanglement is arguably at the heart of quantum information and quantum
computation. Although the problem of identification of entanglement in pure states
has been resolved, alternative criteria for the existence of entanglement are still inter-
esting problems. In this project, such criteria are investigated using monogamy rela-
tions. First, a complete set of monogamy relations based on the positive-semidefiniteness
of density operators is developed. Next, new monogamy relations as results of corre-
lation complementarity are introduced. A criterion for the existence of entanglement
in pure states that involves correlations between all the parties is conjectured. The
proofs for systems of two and three qubits are also presented. Finally, implication of

monogamy relations on the fidelity of Remote State Preparation is discussed.
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Chapter 1

Introduction

1.1 Background

Quantum mechanics was categorically one of the most successful discoveries of the
20" century. Since its first formulation in the 1900s, quantum mechanics has opened a
bizarre full-of-wonder world to not only physicists but also mathematicians, chemists
and even biologists. From wave-particle duality to semiconductor, it has proved
itself to be an essential field of study for years to come. Quantum information,
a branch of quantum mechanics, concerns the information science in presence of
quantum effects. Quantum information studies quantum bits, or qubits, and theirs
fascinating properties such as quantum entanglement together with their applications

in communication, computation and cryptography.

1.1.1 Uncertainty relations

Uncertainty relations are mathematical inequalities that set a limit on the precision
at which one may know a certain pair of physical quantities. For example, the more
precisely the position of some particle is determined, the less precisely its momentum
can be known, and vice versa [1]. In 1927, a formal version of the statement was
introduced by Kennard [2],

AxAp, > g, (1.1)
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where Ax and Ap, are the standard deviation of the measurement of x and p, ac-
cordingly.
As quantum formalism progressed, more uncertainty relations were discovered. One
of those relates the uncertainty of measurements of Pauli operators, o1, 09 and o3, in
any physical state p [3]:

A%cy + A0y + A203 > 2, (1.2)

where

No;=(02) — (o))" =1—(o;)*, (j=1,2,3) (1.3)

Here (A) is the expectation value of operator A. Therefore equation (1.2) can also

be written in the form

(01)? + (02)* + (03)> < 1. (1.4)

Although the inequality (1.4) does not explicitly involve any expressions of uncer-
tainty, it is genuinely equivalent to a uncertainty relation. Hence it is natural to
extend the scope of uncertainty relations to cover inequalities that involves trade-offs
of knowledge one may know about the expectation values of different operators in a
physical state. For example, equation (1.4) tells us the expectation values of oy, oy
and o3 can not all be 1, despite that they can individually be. If one wishes to increase
the expectation value of o, one needs to sacrifice either oy or o3 or both. Inequalities
of this kind are also referred to as monogamy relations if they involves more than one
system.

The term "monogamy” is often understood in slightly different ways. In quantum
entanglement, if system A is maximally entangled with system B, it cannot be en-
tangled with another system C, and vice versa [4, 5, 6]. Therefore, A is said to be
monogamous. On the other hand, monogamy relations also refer to the trade-offs
between strengths of violations of a Bell inequality [7, 8, 9, 10, 11, 12, 13]. In this
project, we are interested in monogamy relations of quantum correlations [7, 14].
They are all direct consequences of the fact that p is a physical state, that is the
inequalities hold for all states. However, the converse statement is not true. If the

inequalities do hold, there are still chances that the state is not physical, i.e p is not
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positive-semidefinite. The problem of finding a complete set of inequalities ensuring

that p is positive-semidefinite is still open.

1.1.2 Quantum entanglement

The term ” Entanglement” was first mentioned in 1935 by Schrédinger in his reply to
Einstein-Podolsy-Rosen (EPR) paradox. Since then, it has been the topic of debate
that troubled even the greatest minds in physics. As an example, consider the thought
experiment in which Alice and Bob shares a pair of daughter particles from a fission
reaction. Each of the daughters can have spin up or down. Since the parent nucleus
has spin zeros, if one of the daughters has spin up, the other must have spin down.
However when given to Alice, her particle has its spin in the mixture of up and down
and only after she performs measurements does the spin collapse to either state. The
joined state of two particles can be written as
1

}\P_> - NG

(Ma@ N —1Ha®Ms), (1.5)
such that the qubit A is given to Alice and qubit B belongs to Bob. Then Alice
and Bob move light years away from each other and Alice measures her qubit. If
the result is |1), Bob’s qubit also collapses to |}) instantaneously, although they
are separated. Finstein argued that there had to be elements of reality hidden in
the physical states, and hence quantum mechanics should be incomplete. Not until
1964 when Bell introduced the famous Bell’s inequality did the problem settled. The
inequality gave an upper bound on the total correlation a system obeying local realism
might have. Local realism was one of the fundamental assumptions in Einstein’s
argument. Subsequent experiments showed that some quantum system actually beat
this bound, and hence the observed correlations could not be explained by local
realism. Quantum entanglement is a necessary resource to observe the violation.

The question is now whether one could say anything about the nature of entanglement
of a system after he performs some local measurements in the laboratory. Fortunately

the answer is yes. Non-entangled system satisfies some monogamy relations that
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entangled systems do not. Thus these inequalities form criteria for the existence of
entanglement. Although some of such criteria are well known, finding new monogamy

relations that identify entanglement is still an interesting problem.

Quantum bits

Zeros and ones signal, or bits, are the unit of classical information. In the same
manner, qubit is the unit of quantum information. Qubit is a quantum two-level
system, for example polarization of a photon or z component of an electron’s spin.
Unlike classical bits which value must be either 0 or 1, qubits can be and usually are

in superposition state of 0 and 1. The general state of a qubit is often written as

(W) = |0) + B [1), (1.6)

where |0), |1) are eigenkets of a binary observable like o, and «, 5 are two complex
coefficients. As a rule, |U) is made normalized, that is (¥|¥) = 1, by requiring
la|? + 8] = 1. Tt is often referred to as pure state, in discrimination with mixed
states.

Pure states of more than one qubit can be either non-entangled or entangled. Non-
entangled states, also called separable or product states, are those that can be written

in the form

V) = |U)) @ [Ue) @ ... [Up), (1.7)

where |U}), [W¥s),...,|¥y) are some pure states of the 1%¢, 274 . N'" qubit respec-
tively, and ® stands for the tensor product. Meanwhile, entangled state are those

that can not be written in the form (1.7), like [¥*) in (1.5).
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Density operator

Instead of the wavevector representation | W), one may use the density operator defined

as

p=19) (¥l (1.8)

If |¥) is product, p is also product

P=p1RP&---&Q pn, (1.9)

and vice versa. In recent studies, density operators are preferred over the wavevectors
as they can be generalized with ease to mixed states, those that can not be written
as (1.8). For example,

p =5 (10) {0 + 1) (1)), (1.10)

N[ —

is a mixed state. There are two important properties of density operators. First, they

are Hermitian

pl = (1W) (¥)" = |¥) (¥] = p. (1.11)

And second, all eigenvalues of p are non-negative real numbers. The fact that they
are real comes from the Hermiticity of density operators. To see that the eigenvalues
of density operators are all non-negative, let {|j)} be an orthonormal basis in which
p is diagonal. If one measures the projection of p into the {|j)}, p will collapse to one

of the states {|j)} with the probability

A =Tr(p 15) (1), (1.12)

which is also the j™ eigenvalue of p. Hence all \; must be non-negative. The converse
is also true. Every Hermitian matrix which all eigenvalues are real and non-negative
is a density operator representing a physical state. This criterion is a crucial point in

identifying the complete set of monogamy relations in the later chapter.
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Quantum Correlations

Throughout the thesis, the measure of quantum correlations of an N-qubit state will

be defined as

Ty = {0 @ .00y =Tr(pol & ..@alV), (1.13)

p

where p is the density operator as usual, USZ) are the Identity (ur = 0) and Pauli
matrices (1 = 1,2, 3) acting in the space of the k' qubit. T}, . can also be inter-
preted as the expectation value of a,(fl) R...® J,%) in p.

The elements T,

wi.uy from a tensor 7' called correlation tensor, or sometimes corre-

lation matrix. For a system of a single qubit, T" reduces to a vector known as the
Bloch vector. The definition arises as a consequence of the fact that tensor products
of Pauli matrices a,(}l) ®...® a,%) form a basis of the Hilbert space of the multipartite

state. It, hence, allows the density operator p to be decomposed as

3 3
_1 N
P=ox D D Tnumo) ® @0}, (1.14)
m=0  pun=0

Since p is normalized and the Pauli matrices are traceless, the following result is

straightforward
Too..0 = 1. (1.15)

An important bound on the correlation is obtained immediately from the purity

condition

Tr(p?) < 1. (1.16)
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p1=0 pun=0rv1=0 vn=0

1 3 3
= on o> T L (1.17)

From (1.16) and (1.17), one has for a pure state:

Z Z 2 e =2V, (1.18)

p1=0  pn=0

and for any general mixed state:

3
Z Z H1---UN — ' (1'19)
uw1=0  pn=0

1.2 Objectives

The project aims to construct a complete set of monogamy relations, i.e. a set from
which one is able to derive any other monogamy relations. On the way, we would
like to find new monogamy relations that all physical states satisfy. In particular, we
hope to find an alternative characterization of entanglement in pure states. Further-
more, we seek for the applications of the monogamy relations in the field of quantum

communication.

1.3 Organization of the thesis

The thesis is organized as follows. After introducing the background of monogamy
relation and quantum entanglement in Chapter 1, the complete set of monogamy

relations is presented in Chapter 2. Chapter 3 then states new monogamy relations
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discovered along the project, especially a bound for bipartite correlations. Chapter 4
continues with a conjecture on multipartite correlations that would enable an alter-
native characterization of entanglement. Detailed proofs for the cases of up to three
qubits as well as possible approaches for generalization are also discussed. Chapter 5
then considers Remote State Preparation and signification of the monogamy relations
derived in the previous chapters. Finally, I conclude my thesis by summarizing the

challenges of the study, the results of the project and the future works.



Chapter 2

Complete set of monogamy

relations

2.1 Positive semi-definiteness of density operator

It is known that density operators are Hermitian and have all eigenvalues non-
negative. Mathematically, one calls such matrices positive-semidefinite matrices. The
converse is also true. Every positive-semidefinite matrix is the density operator of a
physical state. Hence, checking the positive semi-definiteness of a matrix is sufficient
to conclude the existence of a physical state. There are few algorithms to check for the
positive-semidefiniteness of Hermitian matrices. In this section, the principal minors

test will be introduced. Detailed proof can be found in [15],

Theorem 1. A Hermitian matriz is positive-semidefinite if and only if all of its

principal minors are non-negative.

Minors of a matrix are the determinants of its submatrices. Principal minors are
the determinants of submatrices obtained by deleting the same columns and rows.

Determinant of the matrix itself is also considered a minor. For example,

17
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are both minors of
1 2 3

4 5 6
789

but only the former one is a principal minor.
Let Ds (S C {1,2,3,...,n},S # @) be the determinant constructed from the same

columns and rows specified by S. Condition of Theorem 1 can be rewritten as
Dg >0 VS C{1,2,3,..,n},5 # 0. (2.1)

These inequalities form a complete set in the sense that if a matrix satisfies all of
them, it is a density operator representing a physical state. The job now is to write
them in terms of correlation tensor and a complete set of monogamy relations is

readily found.

2.2 Complete set of monogamy relations

In this section, we will present the complete set of monogamy relations for a two-qubit

system. In that case, the density operator is generally a 4-by-4 matrix

P11 P12 P13 P14
P21 P22 P23 P24
P31 P32 P33 P34
Pa1 P2 P43 Pad

On the other hand, p can also be decomposed as in (1.14). From that, one may write

the entries of p in terms of correlations

1

P11 = Z(TOO + Tos + T30 + T33), (2.3)
1

P22 = Z<TOO — Tos + T50 — T33), (2.4)
1

p3s = —(Too + Tos — T30 — T33), (2.5)

4
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P4 = i(Too — Tos — T30 + T33), (2.6)
P12 = Py = i [(Tor + Ts1) + i(—To2 — T32)] (2.7)
P13 = P31 = i [(Tho + Ths) + i(—T20 — T23)] (2.8)
p1a =Py = i (T — Too) + i(—Tha — To1)] (2.9)
P23 = P33 = i (T + T2) + i(Thz — Ta)], (2.10)
Pas = Pyg = i [(Tho — Thz) + i(—Tao + To3)], (2.11)
P34 = Py3 = i [(Tor — T1) + i(=To2 + T32)] (2.12)

where p3, is the complex conjugate of p;2. Hence every minor of p is a function of
the correlation tensor Ty, and the set of inequalities (2.1) becomes a set of monogamy
relations. The fact that the set is complete is a direct consequence of the completeness
of (2.1). Here only inequalities involving 1-by-1 minors and 2-by-2 minors are listed
down. The rest of the set are given in Appendix A as they are quite cumbersome. The
1-by-1 minors are actually the diagonal entries of p. Thus, corresponding monogamy

relations are

1

P11 = Z(Too + Tosz + T3 + T33) > 0, (2.13a)
1

P22 = Z(Too — Tos + T30 — T33) > 0, (2.13b)
1

P33 = Z<TOO + Tog — T50 — T33) > 0, (2.13c)
1

Pag = Z<TOO — Tog — Ts0 + T33) > 0. (2.13d)

Although the 2-by-2 minors are much more complicated, they are in fact more inter-

esting as they involve second order of correlations. Direct calculation gives

D1y = p11pa2 — p12p2a1 = 0,
or (Too + T30)2 > (Tos + T33)2 + (Tor + T31)2 + (Toe + T32)2 ) (2.14)
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Dh3 = p11pss — p13ps1 > 0,

or (Too + Tos)* = (Tso + Ts3)” + (Tho + Tis)” + (Too + Tis)”, (2.15)
Dy = p11pas — prapa 2 0,

or (Too + Ts3)* > (Tos + Ta0)” + (Tn1 — Too)? + (Th2 + Ton)?, (2.16)
Dag = paapss — pasps2 > 0,

or (Too — T33)2 > (Tos — T33)2 + (Th1 + T22)2 + (T2 — Tzl)2 ) (2.17)
Day = paapas — pazpaz > 0,

or (Too — Tos)* = (Ts0 — Ts3)* + (Tho — T13)* + (Tao — T2)”, (2.18)

D3y = p3zpaa — p3apaz > 0,
or (Too — T30)2 > (Tos — T33)2 + (Tor — T31)2 + (The — T32)2 . (2.19)

One may also write (2.14)-(2.19) in more compact forms:

(Too = T30)2 > (Tos £ T33)2 + (T £ T31)2 + (Toe £ T32)2 ) (2.20)
(Too £ Tos)® > (Tso £ Tis)” + (Tho + Tis)” + (Tao % Ths)?, (2.21)
(Too £ Ts3)* > (Tos £ To)? + (Tua F To2)* + (Tha F Ton)*. (2.22)

Equation (2.14), for example, tells the trade off between (Tps + Ts3)”, (Tor + Ts1)
and (Toe + T32)2 as their sum is bounded by (Tyo + T30)2.

The completeness of the set implies that if one, in some ways, derives a monogamy
relation, he must be able to do the same by combining inequalities from the set. The
purity condition

Tr (p*) <1, (2.23)

is an example. One may obtain (2.23) just by summing up (2.14) to (2.19) to get

Tr (p%) = i <i: T,fl) <Te =1 (2.24)

k,1=0
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where the first equality is obtained by noticing that Tr (p?) can be written in term
of Ty, as done in equation (1.17). Furthermore, the state is pure, that is Tr (p?) = 1,
if and only if equalities hold for equations (2.14) to (2.19), or all 2-by-2 minors are
zeros, hence all but one of the eigenvalues of p must be zero [15] and the state must
be pure.

It is worth mentioning that the monogamy relations derived here are stronger than the
ones from correlation complementarity, which will be introduced in the next chapter.

For example, since

{0'0®O'3+03®0'3,0'0®01—|—O'3®(71}:0, (225)
{0'0®O'3+Ug®0‘3,0‘0®0‘2+0’3®0‘2}:0, (226)
{00@0’1+O’3®0’1,0’0®0’2+0’3®0’2}:0, (227)

where { } is the anti-commutator, one has from the correlation complementarity:
(Tos + Ts3)” + (Ton + T1)* + (Too + Ti2)® < 1. (2.28)
However, from equation (2.14), one also has
(Tos + T33)* + (Ton + T1)* + (Toz + Ti2)” < (Too + Too)* < 1, (2.29)

which is clearly a better bound.
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Chapter 3

Correlation complementarity

3.1 Correlation complementarity

A bound on the sum of squared expectation values of anti-commuting operators in a

quantum state is presented by Kurzynski et.al. [7, 16, 17].

Theorem 2. Let
S={4,:j=1,...k}, (3.1)

be a set of traceless and trace-orthogonal operators such that

and each operator anti-commutes with all other elements of the set
{A,A;} =0 Vi#j, i,5=1,.. k. (3.3)

Let
a; = (A;) = Tr(p A;), (3.4)

be the expectation value of A;j in p. Then

d i<, (3.5)

Aj es

23
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for any physical states p.

Note that if the operators A; are the Pauli operators o, ® --- ® 0,,, ; become
the correlations defined in the Chapter 1. Thus, Theorem 2 tells the trade-offs be-
tween correlations in a physical state. Here we present a proof different from that

in [7]. The proof makes uses of the positive-semidefiniteness of the density operator p.

Proof. Denote

a = (ay,... ), (3.6)

and

A= (A, A, (3.7)

We will prove the theorem by contradiction. Assume that there exists a physical state

represented by density operator p such that

d o= >1. (3.8)
AjGS

For convenience, define the operator
k
F=Y a4, =a4. (3.9)
j=1

Using conditions (3.2) and (3.3) one has

k k k k
i=1 j=1 i=1 j=1
k
=> 1= [dL (3.10)

1

R
Il

Therefore, F' has only eigenvalues j:|a>| and the two eigenvalues are of the same

degeneracy since

Tr(F) = iajTr(Aj) = 0. (3.11)
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Consider unitary operator that diagonalizes F, i.e. U'FU = || (I, — II_), where

I1. are the projectors onto subspaces of the degenerated eigenvalues :|:|5>]:

1 0 0 0 0 0 0 0
0 ... 10 ...0 0 ... 00 ... 0
I, = ;I = . (312)
0 00 ...0 0 01 0
0 0 0 0 0 0 0 1

Since II, + II_ = I, one has

1 1
UILLU == (1— F. 3.13
2( r—aﬂ) (3.13)

Furthermore, let S = {A; : j = 1,...,k} be extended to §" = {A; : j =1,..,k, k +
1,...,n} such that S, together with I, forms a traceless and trace-orthogonal basis of

the space of all states. Let p be decomposed in the basis as
<H+Z% ) <n+p+ 3™ a4 ) o
j=k+1

where d is the dimension of the space. The probability to observe results associated

with UII_UT in the state p is

1 1 1 &
Tr(pUH,UT):Tr Zl <H+F—jp—:—F2+ E CYjAj E CY]FA>
|C¥| |CY| j=k+1 ] =k+1
1 —
=54 (1—1ad]).
(3.15)

where (3.10) and the trace-orthogonality of the operators A; have been applied. Since
|E>] > 1 by the assumption, the probability is negative, and it hence contradicts the

fact that p is a physical state. The theorem follows. m

As shown in the proof, the correlation complementarity is a consequence of the
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fact that the probability of observing a physical quantity in a physical state is non-
negative, or equivalently the density operator p is positive-semidefinite. Thus, it is
tolerable that the correlation complementarity is weaker than inequalities from the
complete set introducted in the last chapter. Still, this correlation complementarity
theorem allows one to derive new monogamy relations, as long as one has a set of
mutually anti-commuting operators. Such relations are listed in the next section.

Some of them will be used frequently in the later chapters.

3.2 Some new monogamy relations

Theorem 3. Fvery physical state of three or more particles satisfies:

1Tall” + | Tasll* + | Tacl” < 3, (3.16)

where

3
| Tall? = Z Tjgooo...m

j—1
‘TABH Z jk00...05 (3-17)
]k 1
I Tac|” = Z 5000...0-
7,l=1

Proof. The proof comes immediately from the correlation complementarity theorem
by realizing that correlations are, by definition, expectation values of Pauli operators.
First, let the correlations be arranged into groups such that the operators that cor-

respond to members of the same group anti-commute. One such rearrangement is
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Group 1 Group 2 Group 3
Tr000.0 711000 T1010.0 Tio00.0  T2000.0  T3000..0
To000.0  T1200.0 T1020.0 To100.0  T3100.0  Ti1100.0

T3000..0 T1300..0 T1030..0 = T2200..0 T3200..0 T1200..0

T2100..0 T2010..0 T2300..0 T3300..0 T1300..0
T2200..0 T2020..0 T3010..0 TlOlO..O TQOIO..O
T2300..0 T203O..0 T3020..0 T1020..0 T2020..O
T3100..0 T3010..0 T3030..0 T1030..0 T2030..0

TSQOO..O T3020..0

T3300..0 T3030..0

Since Pauli matrices mutually anti-commute with each other and commute with
identity matrix, it can be verified that operators which correspond to members of
the same group mutually anti-commute. Applying the correlation complementarity

theorem to each group gives

To00.0 + To100.0 + Tono0.0 + Tos00.0 + Tovr0.0 + Toono.0 + Tanso.0 < 1, (3.18)
To000.0 T Ta100.0 T Tanoo.0 T Tas00.0 T Too10.0 + Tanzo.0 + Tonso.o < 1, (3.19)

Tab00.0 + Thioo.0 + Tiaco.0 + Tiavo.0 + Totno.o + Tomeo.0 + Tonso.0 < 1. (3.20)

Finally, the result (3.16) is obtained by adding up the three inequalities above. [

Corollary 1. FEvery physical state of three or more particles satisfies:

N | ©

1
SUTAll + [1Tsll* + 1 Te|P) + [ Tasll® + | Tacll” + || Taell” < (3.21)

Proof. From (3.16), by permuting A, B and C', we have the following inequalities

| Tal* + | Tanl® + || Tacll? < 3,
I Ts[* + || Tasll® + | Tpcll* < 3,

| Te||* + | Tac|]” + 1| Tpel” < 3. (3.22)
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By summing them up and dividing the sum by 2, we get the desired result. O

Theorem 4. Fvery physical state of four or more particles satisfies:

1 Tasl > + | Tacl® + | Tanl” < 3, (3.23)

where ||Ta|?, ||Tac||?, |Tapl|? are defined in the same manner as in (3.17).

Proof. Tt is now the matter of rearranging the correlations into groups of mutually

anti-commuting corresponding operators. One possible rearrangement is

Group 1  Group 2 Group 3
T11000.0  Ti0100.0 Ti0010.0 T11000.0  Ti0100.0  Ti0010.0
T12000.0 T10200.0 T10020..0 T12000.0  Tr0200.0  Ti0020.0

T13000..0 T10300..0 T10030..0 = T13000..0 T10300..0 T10030. .0

T21000..0 TQOIOO..O T20010..0 T20100..0 T20010..0 T21000..O
T22000..0 T20200..0 T20020..0 T20200.,0 T20020..0 T22000..0
T23000..O T20300..0 T20030..0 T20300..0 T20030..0 T23000..0
T31000..0 TSOIOO..O T30010.‘0 T30010‘.0 T31000.‘0 T30100..0
T32000..O TSOZOO..O T30020..0 T30020..0 TSQOOO..O T30200..0
T33000.,O TSOSOO..O T30030..0 T30030..0 T33000..0 T30300..0

Now sum of square of elements in a group is not greater than 1 by the correlation
complementarity theorem. Since there are three such groups, the result (3.23) follows.

]

Corollary 2. FEvery physical state of four or more particles satisfies:

1Zasll” + [ Tacll* + 1 Tap|* + I Tsel* + | Tapll* + | Ten|* < 6. (3.24)

Proof. By permuting (3.23), we have the following inequalities

1Tasl* + | Tacl* + [|Tap|* < 3, (3.25)
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| Tscl” + | Tsel” + || Tool” < 3, (3.26)
| Toall? + | Tesl* + | Tenl]* < 3, (3.27)
| Tpall? + 11 Tosl? + | Tpel]? < 3. (3.28)

By summing them up and dividing the sum by 2 (since each correlation appears

twice), the desired result (3.24) is obtained. O

Theorem 5. Every physical state of four or more particles satisfies:

6IITall* + | Tasl* + [ Tasc|* + | Tapo|* < 9. (3.29)

Proof. The proof is similar to the previous theorem. Let the correlations be grouped

as follows

Grpl Grp2 Grp3 Grp4d Grpb Grp6 Grp7 Grp8 Grp9

T30000.0 T20000.0 T20000.0 130000.0 7300000 T30000.0 T10000.0 T10000.0 T10000..
T30000.0 1300000 T30000.0 7T10000.0 T10000.0 T10000.0 T20000.0 T20000.0 T20000..
T11000.0 1120000 T13000.0 1210000 T22000.0 T23000.0 T31000.0 T32000.0 T33000..
Ti2100.0 T13100.0 Thiiioo.0 1221000 T23100.0 T21100.0 T32100.0 1331000 T31100..
Ti2200.0 T13200.0 T11200.0 T22200.0 T23200.0 T21200.0 T32200.0 T33200.0 T31200..
T12300.0 71133000 T11300.0 1223000 723300.0 1213000 T32300.0 1333000 T31300..
Ti3010.0 T11010.0 Ti2010.0 1230100 T21010.0 T22010.0 T33010.0 T31010.0 T32010..
T13020.0 Th1020.0 T12020.0 T23020.0 T21020.0 T22020.0 T33020.0 T31020.0 T32020..

T13030..0 T1103O..0 T12030..0 T23030..0 T21030..O T22030..0 T33030..0 T31030..0 T32030..

Elements of the same group correspond to mutually anti-commuting operators.
Hence their sum of squares is upper bounded by 1. Since there are 9 such groups, the

result (3.29) follows. O

0

0
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3.3 A bound on the sum of squared bipartite cor-
relations

Bipartite correlations are the ones that involve only subsystems of two qubits and
therefore have indices of the form £[00...0 and its permutations, where k,[ = 1,2, 3.
The monogamy relations proved in the last section give an upper bound on the sum

of squared bipartite correlations, as stated in the following theorem.

Theorem 6. The sum of squared bipartite correlations of an n-qubit state (n > 4) is

not greater than <;l) Formally,

Z Z Ti00,..0) < <Z)> (3.30)

T ki=123
where 7(k,1,0,0,...,0) are permutations of the list.

Proof. By Theorem 4, we have
| Tasl* + || Tac|® + [|Tanl]? < 3. (3.31)

-1 —1
Since there are n choices of A, (n 3 ) choices of B,C, D, we have n<n 3 ) such
equations. Now each equation is bounded by 3, and bipartite correlations corre-
-2 -2
sponding to each pair of qubits, ||Tap||?* for example, appear (n ) + (n ) =

2 2
(n —2)(n —3) times. If we sum all such equations and divide it by (n —2)(n — 3), we

get
23ty ) g = () e
T kl=123
The inequality is saturated if the given state is fully separable. O]

Remark In the case of four qubits, the inequality reduces to the one in Corollary

2. The proof follows exactly from the proof of the corollary.
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Theorem 6 gives a stronger bound than a similar work by Markiewicz et.al. [18]

which states that for any n-qubit states with n > 3, the following holds

Z Z Tf?(k,l,O,O,...,O) < <Z> (3.33)

T kl=1,2

The difference between the two is that in the LHS of (3.33), the sum is taken over
k,l =1,2 instead of k,l = 1,2, 3 as in Theorem 6. It is remarkable that (;) (3% —22)

non-negative terms are added to the LHS of (3.33) and yet the bound is still (Z)
Without any doubts, Theorem 6 is a major improvement on the inequality presented

in [18].
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Chapter 4

Characterization of entanglement

4.1 Conjecture on the sum of squared multipartite
correlations

In the earlier period of the project, we were attracted to the problem of identification
of entanglement in pure states. Although there is a solution, namely a pure state is
entangled if and only if at least one of its subsystems is not in pure state, we would
like to find an alternative identification which involves multipartite correlations, that
are correlations between all the particles. So far we have obtained analytically such
an identification for pure states of two and three particles and tested it extensively

numerically for four particles.

Conjecture 1. A pure state of N qubits is entangled if and only if:

3
o 1> (4.1)
J1yejN=1

The relation is non-trivial. As one shall see in the example given at the end of the
next chapter, there exists a pure state, of which absolute values of multipartite corre-
lations are all less than 1 and still the sum of squares of these correlations is greater
than 1. Here the proofs for N = 2 and N = 3 using correlation complementarity and

Schmidt decomposition are presented.

33
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4.2 Schmidt decomposition proof

Theorem 7. (Schmidt decomposition [3] ) Suppose |¥) is a pure state of a
composite system AB. Then there exist orthonormal states |a;) for system A, and

orthonormal states |3;) for system B such that
= Nl ®18;), (4.2)
J

where \; are non-negative real numbers satisfying > i )\g =1 known as Schmidt coef-

ficients

Theorem 8. Suppose |V) is a pure state of a composite system AB. Let py =
Trp(pas) and pg = Tra(pas). Then

Proof. Let
= Z/\j o) @ 18;) (4.4)

be the Schmidt decomposition of |¥). The density operator of the composite system
AB is
pas =) (] =N " Ndilay) (] @ 18;) (Bil - (4.5)
ik

Density operators of subsystems are
pa = Trp(pap) = Trp (ZZA Ak o) (o] ®155) <5k|>
_ZZA Ak laj) ockléjk—Z)\ ;) (a] (4.6)
pe =Tra(pap) = Tra (ZZA Ak o) (o] @ 155) <5k\>
—ZZA el 35 ﬁkvzm Bl (4.7)
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Therefore,
o () = (R b o) = 0 = TN I ) = Te(6h) - (4)
J

Furthermore,
2
Tr (p%) = Tr (p3) Z )\4 <Z A?) <1 (4.9)
J

The equality holds if and only if all but one of the Schmidt coefficients \; are zeros,

i.e. the state is a product state. O

Theorem 9. (Conjecture 1 for N = 2)

A pure state of two qubits is entangled if and only if:

3
> Tl (4.10)

k=1

Proof. Since the state |U) is pure, one has from (1.18):
3
1=> T, —T2+2Tk0+z Z+ZTM. (4.11)
p,v=0 k,l=1

Since Ty = 1 as always,

ZTkO+ZT5+ ZTkl_s (4.12)

k=1

Now let pap be decomposed in the basis of Pauli matrices

PAB = — <H+2Tkoak )®00 —|—ZT;O’O ®O'ZB)—|— ZT;O‘k ®al( )> . (4.13)

k=1

Density operators of the subsystems are

1
pA = TrB(pAB = 5 (H+2Tk00k ) y (414)
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3
1
ps = Tralpan) = 5 (]1 +) TOla,@) . (4.15)
=1

From Theorem 8§, one has

3
1
2\ 2
Tr(p3) = 5 <1 + ;Tm) <1 (4.16)
3
= > TH<L (4.17)
k=1

Similarly,

3
d Th<t (4.18)
=1

Substituting the two above inequalities into equation (4.12) gives

3
Y T (4.19)
k=1
The equality holds if and only if Tr (p%) = Tr(p%) = 1, if and only if all but one of
the Schmidt coefficients \; are zero, which means |¥) = A, |o;) ® |5;) for some j is

non-entangled. The theorem follows. O

Theorem 10. (Conjecture 1 for N = 3) A pure state of three qubits is entangled
if and only if:

3
> Ti. > 1 (4.20)

k,l,m=1
Proof. As done in the proof of Theorem 9, the purity of |¥) gives

3

p,v,m=0

3 3 3 3
= T0200 + Z Tk200 + Z T0210 + Z TO20m + Z Tkzzo
k=1 =1 m=1 k=1

3 3 3
+ > Tiom+ D Tom+ D> T (4.21)

k,m=1 I,m=1 k,l,m=1
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Since Tooo = 1 as always,

Z Tioo + Z Too + Z Toom + Z T

k=1

+ Z +Tom + ZT&M Z T =1

k,m=1 Il,m=1 k,l,m=1

(4.22)

Now one may consider the system ABC' as a combination of subsystem A and sub-

system BC'. Define

3
1
pa = Trpc(papc) = B (H + ; TkOOUI(cA)> ; (4.23)
1 3
pec = Tra(pasc) = Z(H + Z TOZOUZ(B) ® U(()C)

=1

+ Z Toomao P ol + Z ToszZ B ol9). (4.24)
m=1

I,m=1

to be the density operators of the respective subsystem. Applying Schmidt decom-
position to the cut A|BC' gives

T (02) = Tr (phe) (4.25)
3
— % <1+ZT,§00> = <1+ZT&O+ZT§M+ > TO%m) (4.26)
= I,m=1
— Z T2 =1 +22Tk00 ZTOZZO ZTOQOm (4.27)
I,m=1

In the same manner, Schmidt decompositions for the cut AB|C and AC|B give

Z Tip=1+2 Z Toom — Z Tioo — Z TG0, (4.28)

k=1

Z Tiom =142 ZTOQZO Z Toom — ZTkOO (4.29)

k,m=1
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Summing up (4.27)-(4.29) gives
3 3 3
> Tom+ D T+ Y. Tapw =3 (4.30)
I,m=1 k=1 k,m=1
Substituting back to equation (4.22), one has
3 3 3 3
ST+ Too+ Y Tom+ Y. T =4 (4.31)
k=1 =1 m=1 k,l,m=1
Once again, Schmidt decomposition gives

3 3
1
Tr(p%) = 5 ( + ZT,300> <1 = ) Th <1, (4.32)
k=1 k=1

3 3
(1 + ZTU%O) <1 Y Ty <1, (4.33)
=1 =1

N | —

Tr(pp) =

3 3
1
Tr(p2) = 5 (1 + ZT&Om) <1< ) Ty, <L (4.34)

m=1 m=1

Therefore,

3
> TR, =1 (4.35)

k,lm=1

The equality holds if and only if S0 _ T2, = S0 T2, = S22 _ T2 if and only

if pa,pp and pc are all pure states, if and only if |U) = |a) ® |) ® |v) is not
entangled. O]
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4.3 Correlation Complementarity proof

The proof for the case N = 3 using correlation complementarity is a direct conse-

quence of Corollary 1. Since |¥) is pure,

3 3 3 3
Z Tio + Z T + Z Toom + Z T
k=1 =1 m=1

k=1

3 3 3
+ Y At Y Tan+ Y Th, =T

k,m=1 I,m=1 k,l,m=1

(4.36)

By Corollary 1,

3 3 3 3 3 3
% (Z Tioo + ZTOQZO + Z T[]20m> + Z T + Z Tiom + Z TG, < g (4.37)
k=1 =1 m=1

k=1 k,m=1 I,m=1

At the same time, Schmidt decomposition gives

3 3
1
Tr(p?) = 5 (1 + ZT,300> <1 = ) Th <1, (4.38)
k=1

k=1

3 3
(1 + ZT;‘,O) <1 Y Ty <1, (4.39)
=1

Te(p) =

N —

=1

m=1 m=1

3 3
1
Tr(p) = 5 (1 + ZTOQOm) <1 ) Ty, <L (4.40)

Substitute (4.38)-(4.40) and (4.37) back in (4.36), one has

3
> TR, >1 (4.41)
kl,m=1
The equality holds if and only if |¥) is a product state as before.
Correlation complementarity seems to be able to generalize to multipartite case by
finding appropriate sets of mutually anti-commuting operators. However, the task is
not as simple as one may think. Even with the help of computer, we have not yet

found these sets that enable a complete proof even for four particles.
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4.4 PDE approach

With the help of Mathematica, we have found an interesting property of the sum
3
2
S= Z El---jN' (442)
Jienin=1

that may enable a proof of the conjecture for any N.
First, let |a;) be a basis of the associated Hilbert space of pure states. Any pure state

can be decomposed in the basis
d
U) = ¢lay), (4.43)
J

where ¢; = a; +1b; (a;,b; € R) are complex coefficients and d is the dimension of the

space. The density operator p = |U) (| is then a function of a; and b;,

p=play,...,aq, by, ...;bq), (4.44)
and so are the correlations
le]é---jzv ="Tr (pajl & UjN) = lejz---jN (alv vy Ay by ey bd)' (4'45)

As a consequence, S = S(ay,...,aq,b1,...,b4) is also a function of a; and b;. Using

Mathematica, we have shown for N = 1,2, 3,4,5 that

d 2 2
ij (g—cg + ‘2—5) — C(N). (4.46)
where C'(N) is a positive constant number that depends only on N. The fact that
S satisfies the above partial differential equation may be used to derive some prop-
erties of S. For example, Hopf maximal principle states that solutions of a harmonic
partial differential equation cannot attain maximum or minimum inside an open set.

However, for them to work, we need better understandings of differential geometry
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as well as partial differential equations.

4.5 Future work

As discussed, both proofs using Schmidt decomposition and correlation complemen-
tarity have reached dead ends. It is not known whether a proof from any of the two
methods exists for four particles. Even if it does, there is no guarantee that it can be
generalized. However, numerical sampling suggests the conjecture holds for N = 4
and it seems to be the case also for larger N. A possible new approach is to use
Hopf maximal principle. We have proved that the sum in the conjecture is a solution
of a harmonic-like partial differential equation.The principle states that a solution of
such a differential equation does not achieve maximum or minimum in an open set,
in this case the set of entangled states. Any maximum or minimum, if exist, must
be on the boundary, which is the separable states. Though there are still ambiguous
mathematical details that need to be verify, if true, the conjecture will hold for any

pure states.
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Chapter 5

Remote State Preparation

In this chapter, we shall give a meaning to the conjecture proposed in the last chapter.
It turns out to be related to the fidelity of Remote State Preparation. Furthermore,
using monogamy relations derived in Chapter 3, we shall prove a bound on the total
fidelity of the protocol.

Remote State Preparation (RSP) refers to mechanisms in which one wishes to prepare
a quantum state at remote site using local operations, classical communication and a
quantum entangled state [19]. In this chapter, a protocol to prepare states at remotes
site using entangled systems will be introduced. The RSP protocol is similar to the
one of quantum teleportation [20], except that in RSP the person knows the state
which is meant to be prepared at the remote site while in quantum teleportation he
does not. We shall then calculate fidelities of the results and apply the monogamy

relations derived in the previous chapters to obtain a bound on the total fidelity.

5.1 Protocol of Remote State Preparation

The RSP protocol is as follows. Let there be a 2-qubit entangled state AB that is
shared between Alice and Bob so that Alice has the qubit A and Bob has the qubit
B. Now Alice would like to prepare a designated state at Bob’s site by following this
protocol. First, Alice obtains a third qubit S, so that she now has two qubits SA in

43
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her hand. This is the difference between RSP and quantum teleportation mentioned
earlier. In RSP, Alice is allowed to choose the state of the third qubit S such that
the final result at Bob’s site is the closest to the designated state. Meanwhile in
quantum teleportation, the third qubit given to Alice is in an unknown state. Next,

Alice measures her two qubits in Bell basis:

o) = ﬁ (1005 ®10),4 + |15 ® [1).,). (5.1)

@) = ﬁ (1005 ©10),, — |15 ©[1).,). (5.2)

) = ﬁ (10)s ® 1), + 1105 ©10).,). (53
1

o) = NG (10)s® 1)y = 1) ®10)4)- (5.4)

The outcome will be one of the four states listed above. Alice then sends the result
to Bob. Depending on the result, Bob applies an operator according to the rule listed

here, on his qubit to obtain the designated state:

Alice’s result Operator Bob uses
|DT) — o
|D7) — 03
| Ut — o1
W) — 0P

If the system AB is prepared in a state |®T), the final qubit at Bob’s site B’ will
be in the exact same state as the one Alice chooses at the beginning, S. Therefore,
the protocol allows Alice to prepare arbitrary state at Bob’s with absolute certainty.
However, when AB is only partially entangled, the fidelity of the preparation protocol
is typically less than 1 and depends on how AB are entangled as well as the state

Alice would like to prepare.
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5.2 Fidelity of Remote State Preparation

Let us now calculate the fidelity of the protocol above. First, we shall find the
resulting state at Bob’s site. Let the initial system shared between Alice and Bob,

AB, be decomposed as in equation (1.14):

3
1
pap =7 > TuoP @ (5.5)

=0

Let the state Alice chooses, S, be represented by a Bloch vector ? = (51, 52, S3) such
that

pPs =

N | —

3
1
<H(S)+Sl.0'1 +520' +S3 0'3 > = 525)\.0&5)7 (56)
A=0

where Sy =1 and a(()s) =1 is the identity.
The joined state of the three qubits is then

1
,OSABZPS@pAB:g Z SyT, VU/\)®0(A)®U( ), (5.7)
w,v,A=0,1,2,3

Now Alice measures her qubits SA in the Bell basis and obtains one of the four Bell

states. In general, let the Bell states be represented by
13
S A
PBell = 4 Z Ewoﬁ,) ® U;(y ), (5.8)
N ! =0

where Fy,, is the correlation tensor of ppe;. Each of the Bell states has a respective

correlation tensor Ey/,,. Then Bob’s qubit will collapse to B’ represented by

pp = Trga (pSABPBezz)

1 A) (4)
= Tl'sA (32 Z E/\/ /S)\ UO-)\ O')\, O'/g )O-M/ ®O'l(,B)

wr A\ ,v'=0

= — Z E)\/ /S)\ (5)\)\/(5/”/0_

,uV/\ 0
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3
1
=3 > EnSiTuol?, (5.9)

Hov, A=0

where § is the Kronecker delta. From (1.13) and (5.1)-(5.4), one may obtain the

correlation tensors E corresponding to each of the four Bell states:

E(|o7)) = , (5.10)

(] o] (e} —
(] ] — (@)
Il o
—_
— e} (a) o

—_
o

E(jo7)) = : (5.11)

o o O
e}
= o O O

E(|U)) = : (5.12)

o o o =
o
—

E(|v)) = (5.13)

o o o
o
|
—_
o

Substituting (5.10)-(5.13) into (5.9), a little simplification and renormalization gives
the state pg: of Bob’s qubit corresponding to the four possible outcomes of Alice’s

measurement:

%
1 b — (S51,5%,53)T0 =

p(|0)) = 50+ 1= D ) (514
-
p(|0)) = 51+ TSR D) (5,19
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1 b + (54, 82,S3)T0 =

(DY) = =(1 5.16
pp(|@F)) 2( + 1+(Sl, 5,57 ), (5.16)
3 1 b + (=5 82,53)T0
(ld)) = =(I ’ od 1
pp(|7)) 2( + 7 5. 5507 ), (5.17)
where
@ = (Tho, Tao, Tso) , (5.18)
_>
b = (T01>T027T03)7 (5'19)
7 = (01,02,03) (5.20)

are the local Bloch vectors of A and B respectively, 7 is the vector of Pauli operators,

and
Ty T Tis

TO = T21 TQQ T23 . (521)
Ty T Tss
Then Bob decides which operator to apply according to the rule listed above. The

resulting states p, are

1 (<baby b ?TO -

|®T)) 5(]I+ 5 (515,507 ), (5.22)
prljo) = 50+ T2 S; 5 Sjﬂ’ ). (5.23)
prllr)) = 50+ (mtet) SfT‘) ). (5.24)
prll)) = 50 e S S§T° 7). (5.25)
Their respective Bloch vectors are
T gty = tj””(?i:;j ;j%;“, (5.26)
gy = (bes by =b) = 5T, (5.27)

4 (=51,55,55). b
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_bwa_b 7bz - T

Py = | v.be) E?J, (5.28)
1+ (Sy, Sy, —S3). b

?l - bazabwb ?To

1 - (Sla‘s?a SS) b

(5.29)

Now, let the probability that the Alice’s outcome is |[®T) |®7) |¥T) and |¥~) be

Po+y, Po-y, Py+y and Pg-y respectively. One has

Doty = Tr (|@F) (@F| psa) = Z [1—(Sy,—Ss,S3).d], (5.30)
1
= Tr (|97) (7] psa) = 7 [1 = (=51, 52, 5). @], (5.31)
1
|W+::1}q ><w+]pSA)::Zp._(shfg,—sgfﬁL (5.32)
1
=Tr (JU) (T | psa) = 11— (51,5, S3).d). (5.33)
The average resulting state at Bob’s site is then
T = Py T oy + P 7o) + ooy T as) + Pasn) T e (5.34)
— 371 (5.35)

We define the fidelity as the square of inner product between the Bloch vector of the
average resulting state 7 and M = (m1, ma, m3), the Bloch vector of the state Alice

actually wishes to prepare at Bob’s site:
F= (?Wi)z - (?TO.WZ)Q — (?.WZTOT)z. (5.36)

Since Alice has the freedom to choose the qubit A, and hence the corresponding Bloch

vector ?, she will do it in a way such that the fidelity is maximized:

Fruw = mﬁax{(?.mToT)Q}
= [@1f?  (when 5l wy )
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= (Tyymy + Tiama + Tl:ﬂ?”bs)2 + (Tormy + Tooms + Tz:zm?,)2

+ (T31m1 —+ T32m2 —+ T33m3)2. (537)

At the end of this chapter, an example is given showing that sometimes it is optimal
for Alice to choose the state ? of the third qubit different from 7i. Since only the
characteristic of the system AB is of interest, let the fidelity be averaged over every

possible state that Alice wishes to prepare at Bob’s site, i

3
1 1 1
J N —— %mm:_§nﬂ:_T 2 5.38
47T// 3# ) J72%4 3|| ABH Y ( )
Q =

where the integral is taken over the whole Bloch sphere. The average maximum
fidelity is hence related to the bipartite correlations between A and B. The protocol
can be extended to the situation where Alice would like to prepare simultaneously
states at multiple remote sites, namely Bob, Charlie and David. In this case, they
share an entangled four-qubit system ABC' D such that A belongs to Alice, B belongs
to Bob, C' belongs to Charlie and finally D belongs to David. The sum of fidelities is
then

Fiot = Fap + Fac + Fap (5.39)
= §||TAB||2‘|“%||TAC||2+%||TAD||2 (5.40)
= LTl + 1Tl + 1 Tao ) (5.1)
§%3=l (5.42)

Here Theorem 4 is applied in the last line. Thus this bound tells us that the final states
at Bob, Charlie and Dave could not be prepared perfectly (Fap = Fac = Fap = 1)
at the same time. If Alice is in favor of preparing the state at Bob’s site closer to
the designated state, she will have to do it at the cost of the fidelities of the states at
Charlie’s and David’s.

As promised, we shall now give an example showing that it is optimal for Alice to
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choose the state ? of the third qubit different from the one she wishes to prepare at
Bob’s site, 1.

Example:  Suppose Alice wishes to prepare the state = \%(1, 1,1) and the state

shared between Alice and Bob is

1 3
) = Jo0) + g 1), (5.43)
which has the correlation matrix
Lo 0
= 0 —¥ o0 (5.44)
V3
0 o0
If Alice chooses & = = \/Lg(l, 1,1) as her third state, the fidelity is
ATy =
F = [mT 7 = 7. (5.45)
Meanwhile, if she chooses &' = \%(1, -1,1),
3 1
F = |?T0.m|2 =1>7 (5.46)

Therefore it is beneficial for Alice to choose the state of the third qubit different from

the one she wishes to prepare at Bob’s site.



Chapter 6

Conclusion

In this project, we have studied the monogamy relations from different perspectives.
First, we have established a complete set of monogamy relations in the sense that
any Hermitian matrix which satisfies all the monogamy relations in the set must be
a density operator of a physical state. The set has been derived from the positive-
semidefiniteness of the density operator. We have also given an example, the purity
condition, to demonstrate the fact that every monogamy relation is a combination of
monogamy relations from the complete set, and we showed, by comparing with cor-
relation complementarity, how the complete relations are more restrictive than other
relations derived up to date.

In the next chapter, we have started from correlation complementarity, which is a
monogamy relation itself, to derive several monogamy relations concerning the trade-
offs between correlations. From one of those, we have proved the existence of an
upper bound on the sum of squared bipartite correlations in a physical system of any
number, greater than four, of qubits. The bound is tight and turns out to be much
stronger than a similar bound obtained by Markiewicz et.al. [18].

Next, we have proposed a conjecture that would enable an alternative identification
of entanglement. The conjecture only involves correlations between all of the par-
ties. Proofs for systems of two and three qubits, using Schmidt decomposition and
correlation complementarity, have been demonstrated but none of them seems to be

able to generalize to systems of any numbers of qubits. However, numerical simula-

o1
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tion suggests the conjecture does hold for larger number of qubits. One promising
approach to prove the conjecture is to utilize the Hopf maximal principle. However,
many hypotheses which are essential for the principle to apply need to be verified.

Finally, we gave a meaning to the quantities entering the conjecture by proposing
a protocol to remotely prepare quantum states and the fidelity, which expresses its
performance, has been shown to depend on the correlations of a quantum state used
in the protocol. Furthermore, using the bound we have just derived, we showed that
in the case of remote state preparation at three different sites, the sum of fidelities of
the prepared states at all sites is not greater than one, and hence disallows the three

states to be prepared perfectly at the same time.
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Appendix A

Complete set of monogamy

relations

This appendix lists all monogamy relations which are consequences of the positivity

of 3-by-3 minors and 4-by-4 minors.

[(Too + Ty0)* — (Ton + T51)* — (Toz + T2)* — (Tos + T33)2} (Too + Toz — T30 — T33)
— [(T1 + To2)? + (Th2 — To1)?] (Too + Toz + Tao + Ts3)

— [(Tho + T13)* + (Too — Tos)?] (Too — Tos + T30 — T3)

(

Tio + Ths + 1T + 1To3) (Tor + Ts1 — iT0e — tT52) (111 + Too + iTho — 115)

_l’_
+ (To + Ths — 150 — iT%3) (To1 + Ta1 + iT02 + iT52) (111 + Do — i1 + i15y)
> 0.

(A.1)
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[(Too + T30)* = (Tor + T31)* — (Tog + T2)* — (Tos + T33)2} (Too — Toz — Tso + Ti3)
— [(Ty1 = Ta2)? + (Tha + T21)?] (Too — Tos + T30 — T3)
[ Tio — Ti3)* + (T — T23)2} (Too + Toz + T30 + T33)
(Tho — Thz — iTog + iTo3)(Tor + T3y — iTog — iT39)(Th1 — Top + iTho + i151)

_I_
+ (Tho — Thg + iTog — iTo3)(To1r + Ts1 + iToe + iT30)(Thy — Tog — iThe — iTo1)
>

(A.2)

[(Too + To3)* — (Tho + T13)* — (Tao + Ts)® — (T30 + T33)2} (Too — Toz — Tso + Ti3)
— [(T11 = Ta2)* + (Tha + T21)?] (Too + Tos — T30 — Ti3)
— [(To1 = Ts1)? + (Too — T32)?] (Too + Tos + T + T33)

(Tho + Thg — iTog — iTo3)(Tor — Ty — iTop — iT32)(Th1 — Tog + iThp + iT1)

_l’_
+ (Tho + Thg +iToo + iTos) (Tor — Ta1 + 70 + iT50) (111 — Tho — iTho — 111)
>

(A.3)

[(Too — T33)> — (Tos — T30)” — (Th2 — T21)* — (T + T22)2] (Too — Toz + T30 + T33)
— [(Tho — T13)* + (Too — T23)?] (Too + Tos — Tso — Ts3)

— [(To1 = T1)* + (Too — T32)?] (Too — Tos + Ts0 — Ti3)

(Tho — Thg + iTog — 1T3)(Tor — Ta1 — 1T + iT3) (111 + To + 0119 — iT51)

_l’_
+ (Tho — Thg — iTo0 + iTo3) (Tor — Ts1 + iToe — i152)(Th1 + Too — 1112 + 11%1)
> 0.
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D1234

[(Tn +iT51)* — (Too — ZT12)2} [ Too + iT10)? + (T — 1T21)? + (Th2 — iT22)* + (Th3 — Z'T23)2}
+ [(Too — T30)* — (Toz — T3 2] (Too + T30)* — (Ton + Ts1)* — (Toz + T32)* + (Tos + T33)2}

Tor — Ts1)? + (Too — Tio 2] (Too + T30)* — (Ton + Ts1)* — (Tog + T32)? + (Tos + T33)2}

Tio + iT0)? — (Tis — iTos)?] [(Tho — iT20)* + (To1 + iT11)* + (Too + iT12)? + (Tos + iT33)°]
Ti + iTh2)? — (Too — iT01)?] [(Tor — iTo2)* — (T51 — iT32)°]

Tio + To1)?] [(Too — Ts3)?

)" —
Tyo — To1)?] [(Too + Tg:s)2
)

)
)
)
]
]
]
]

)

)
Too + To3)?

)

(

Ty — iT1)? — (Tos + i1 2} [ Tor + iTo2)* — (Ts1 + Z'T32)2}
Ty — Ths)*] [

Tio +iT3)* — (Ths + ZTzo)Q} [ (Tor — iT32)* — (T — iTOQ)Q}
Tio — iTa3)* — (Tis — iT0)?] [(Ton + iT32)° — (T + iTp2)?]
Thy — Tog + iTho +iT51 ) (Tor — T31 — iT02 + 1T52) (Tho + Ths — 1120 — i153) X
Too — Tos + T30 — T33) + (Th1 — Too + iTho + iT1)(Tor + T31 — iToe — i132) X
Tio — Tiz — iTo0 + iT53)(Too + Loz — Ts0 — Ts3) + (111 + Too + 11120751 ) X

X (Ton + Ts1 — iToe — iT52)(Tho + Tz + 119 + iT53) (Too — Tos — Ts0 + Ts3)

+ (Th1 + Tog — iTho + iT21)(Tor + Ts1 + iToe + iT32)(Tho + Thg — iTng — iTo3) X

(
(
(
(
(
X (Too — TosT30 + Ts3) + (Thy — Too — 1Ty — iT51)(Tor — Ty + 1To2 — iT32) X
X (Tho + Thg +iTo0 + iT23) (Too — Tos + Ts0 — Ts3) + (111 + Too — tTh12 + 1151) X
(Tor — T1 + iTog — iTs2)(Tho — Taz — 110 + iTo3)(Too + Toz + T30 + T33)
+ (Thy + Tog + iT1o — 1151 ) (Tor — T3y — iTog + 1T32)(Tho — Th3 + 1120 — 1T53) X
X (Too + Toz + T30 + Ts3) + (Thy — Tag — iTho — i1 ) (Tor + T3y + o2 + 1T32) X
(

X (Tho — Thg + 1T — 1To3) (Too + Tos + T30 + T53) > 0.
(A.5)



