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ABSTRACT 

Quantum gravity is the last obstacle in the way of a Grand Unified Theory. 

Due to the weak nature of the gravitational force and that larger objects 

undergo larger decoherence, quantum gravity has not been studied directly. 

This thesis aims to provide an analogue for a possible experiment by 

studying the electric field generated by an atom in quantum superposition, 

drawing from formal analogies between the gravitational and electric 

force, as well as an idea of what results future experiments using this set-

up might obtain. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The research described in this thesis is motivated by the questions in the theory of 

quantum gravity, which presents itself as one of the more prominent unresolved 

problems in modern physics. It refers to the last missing puzzle piece in the Standard 

Model: a description of gravitational physics using the principles of quantum 

mechanics. It would apply primarily to environments and situations where the physics 

of neither regime can be ignored, such as in the spaces within close proximity to black 

holes and highly compact astrophysical objects, and the primordial universe before 

rapid expansion would take place. The basic issue studied in this thesis is how one 

would describe the gravity of a massive object in spatial quantum superposition.  

1.2 Literature Review 

Currently, there exist no direct experiments on such gravitational configurations on 

account of two contradictory demands: (i) gravity is an inherently weak force, and thus 

necessitates the usage of particles of considerable mass and size to impart a significant 

gravitational field, and (ii) large objects experience large decoherence, making the 

preservation of quantum superpositions difficult. Hence, the focus on gravitational 

fields here is substituted for the simulation and study of electric fields inside atoms 

prepared in quantum superposition states.  

The main reason for this is that the electric force is several orders of magnitude 

stronger than the gravitational force, which makes the predictions within this thesis 

that are closer to that which can be tested in laboratories. Furthermore, under gravito-

electromagnetism, the Einstein’s equations in the regime of weak gravitational fields 

can be linearized to equations analogous to those of Maxwell’s, bringing a direct 

connection between the electric regime and the gravitational regime (Clark & Tucker, 

2000).  

The thesis proposes an experiment where a projectile neutral atom is shot towards 

target atoms, which are prepared in suitable and relatively simple conditions to study 
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superposition states. As such, the proposed setup is reminiscent of scattering 

experiments. However, as opposed to conventional scattering experiments, there is less 

interest in the detailed trajectory of the projectile or statistics of deflections, and the 

state of target atom is itself very exotic. The figure of merit in this thesis is the 

probability that the projectile gets excited. The core idea is that this probability will be 

different across the various approaches in describing the field of the superposed 

electrons in the atom. There are at least three approaches to do this, which will now be 

briefly reviewed and later expanded upon in the thesis. 

In the first approach, the field generated by the electrons is treated as a separate degree 

of freedom, and hence in quantum formalism it is described by its own Hilbert space. 

For gravity, this approach dates back to the thought experiment proposed by Richard 

Feynman in the 1957 Chapel Hill seminar (Marletto & Vedral, 2017) and has also been 

explicitly used in calculations of gravitational entanglement by Marletto & Vedral 

(2017b) and Bose et al. (2017). Accordingly, in the electric-field analogue, one 

describes an electron and its field by the state in two Hilbert spaces: |electron⟩|field⟩, 

where the first space describes the electronic configuration (ignoring spin), and the 

second space describes the electric field.  If the electron is superposed across different 

orbitals, the corresponding electron-field state is assumed to be 

|electron 1⟩|field 1⟩  +  |electron 2⟩|field 2⟩, where the first kets represent the two 

spatial configurations of the electron, and for the second kets, the field generated when 

the electron is in the corresponding configuration. If the projectile is now moving 

through a region of such superposition, it interacts only with the field (all interactions 

are through the field) and it is shown in the thesis that the state of the field alone is a 

mixed and time independent state. For slowly moving projectiles, the probability of 

exciting them is negligible. 

In the second approach, the so-called semi-classical approach, the field generated by 

the quantum superposition is calculated by assuming that charge density is 

proportional to the quantum probability of finding the particle in a given point in space. 

For gravity, such assumptions appeared in the Schrodinger-Newton model (Bassi et al., 

2017), and for electrodynamics they have been thoroughly investigated by Jaynes 

(1978). From the present proposal’s point of view, the superpositions considered are 

not the eigenstates of the target atoms, and hence they evolve in time. Accordingly, the 

charge distribution changes in time, leading to the time-dependent electric and 
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magnetic fields that are computed from the usual Maxwell equations. Changes in the 

charge density are proportional to the quantum probability of locating the electron 

around a given point, while the current density is proportional to the quantum 

probability current. When a projectile propagates through a region of superposition, it 

experiences time dependent fields and hence the intuition is that the probability of 

excitation grows as compared with the first approach. This is indeed confirmed by 

calculations performed later in this thesis. In this way, one can experimentally verify 

which of the approaches is not correct. 

Finally, this thesis will also briefly mention a third approach, which is not something 

that will be focused on. One could also run this experiment through the machinery of 

quantum electrodynamics via a field-theoretical approach and compute the probability 

of excitation in this model. While one would expect the outcomes of such an approach 

to be closest to real experiments, this approach is beyond the scope of present thesis. 

The main goal of this thesis is to provide theoretical evidence that the probability of 

excitation of the projectile can be distinguished between the first two approaches. 
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CHAPTER 2 

METHODOLOGY 

 

2.1 The Main Idea 

The main idea of this thesis can be represented by Figure 2.1.1.  

 

Figure 2.1.1 A hydrogen projectile atom (H) travels through the electron cloud of the larger 

target atom (blue circles), with impact parameter b. We compute the probability to excite the 

projectile atom and show that it is different in different approaches to describe the field 

generated by the cloud. 

A neutral target atom is prepared in a state of superposition between two orbital energy 

levels. In the interest of simplifying matters, we set these two states to be s-orbitals of 

alkali metals, as they have no orbital angular momentum and are hence spherically 

symmetric. Selecting alkali metals allows us to focus on their single outermost valence 

electron, while assuming the rest of the atomic structure to be effectively replaced by 

a +e particle at the centre of the atom. The resulting configuration is a hydrogen-like 

system, with the superposition involving the electron taking on different principal 

quantum numbers n, but maintaining l = 0 and m = 0.  
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Here, we encounter an issue. This s-orbital to s-orbital transition is dipole forbidden, 

which raises questions about how exactly such a configuration could be prepared in 

the target atom. We note that this can be achieved with a Raman configuration of two 

lasers, which drive the transitions between the s-orbitals and an additional intermediate 

state for which the dipole transition is allowed.  

Another neutral atom is prepared to serve as a projectile, propagating through the 

electron cloud of the target atom. For simplicity, we assume that the path of this 

projectile atom is a straight line, i.e. the electric field of the target atom is 

approximately uniform across the wave function of the projectile such that no net force 

acts on the projectile. In such a case, it is also plausible to invoke dipole approximation 

and treat the projectile’s internal electronic configuration as a two-level system, 

involving energy levels that closely match the possible oscillations in the field of the 

target atoms. The thesis will go into further detail on the steps executed, but we found 

it appropriate to clarify the physical assumptions made before doing so.  

2.2 Establishing Relevant Transitions 

In order to ensure our setup is physically plausible, we must first determine the species 

of the target and projectile atoms, and check if there exists a transition between energy 

levels in the projectile atom that has a frequency comparable to the energy difference 

between the superposed states in the target atom, which, in the semi-classical approach, 

would be the frequency of the oscillating field. 

The hydrogen atom is selected to serve as the probe in this setup, primarily due to its 

simplicity. However, we note that the probe cannot be prepared in its ground state, as 

exciting it to a higher energy level from the ground state requires more energy than 

any difference of energy states of the heavier atom, exceeding even their ionization 

energies, assuming the absence of external electric and/or magnetic fields. Hence, we 

opt to use the 2s to 3p transition, which is dipole allowed and incurs a less expensive 

energy cost of 1.889eV. The 2s state of hydrogen is also meta-stable state for its 

electron to occupy with a lifetime of 0.12 seconds. The probe atom is expected to 

complete its trajectory within a time frame on the order of femtoseconds, so we are not 

concerned with the spontaneous emission of the hydrogen projectile to the ground state.  

With this probe atom transition in mind, we select target alkali metals transitions with 

energies closely matching the 2s to 3p orbital transition. 
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Source Atom Lower State Upper State Lower eV Upper eV 
Transition 

Energy (eV) 

H 2s 4s 10.199 12.749 2.550 

Li 3s 11s 3.373 5.271 1.897 

Na 4s 17s 3.191 5.084 1.892 

K 4s 5s 0 2.607 2.607 

Rb 5s 6s 0 2.496 2.496 

Cs 6s 7s 0 2.298 2.298 

Fr 7s 8s 0 2.447 2.447 

Table 2.2.1 Transition energy data from NIST  

Table 2.1 organizes values derived from the NIST database of energy levels and 

transitions. It should be noted that a closer match to the probe atom transition is 

obtained for lithium and sodium, where the transition is between the first excited state 

and a much higher Rydberg state. Conversely, for heavier elements, the match is less 

accurate, with transitions between the ground state and first excited state for heavier 

elements. This is because, as far as the NIST is concerned, there exist no other 

transitions for these heavier elements that can overcome the 2s to 3p energy 

requirement. 

With our table of accepted transitions, we can convert the transition energies into 

transition frequencies that will be relevant for upcoming calculations: 

𝐸 = ℎ𝑓 =
𝜔ℎ

2𝜋
, 

𝜔 =
2𝜋 ∙ 𝐸

ℎ
=

1.602 × 10−19𝐸[eV]

ℏ
. 

We may obtain the following table relevant for upcoming calculations. 

Source Atom Transition Frequency ω (in petahertz PHz) 

H 3.874 

Li 2.883 

Na 2.874 

K 3.961 

Rb 3.792 

Cs 3.491 

Fr 3.718 

Table 2.2.2 Transition frequencies of selected transitions by element 
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As this projectile atom, or probe atom, travels through the electron cloud, it is 

subjected to different magnitudes of electric fields. Hence, even when the field is static 

in time, its charge variations in space are perceived by the projectile atom as a time 

dependent field and accordingly there is a chance of excitation even in this case.  

2.3 Approach 1: A Hilbert Space Description 

In the first approach, we will assume that the target atom and field state are described 

by: 

|𝑛𝑠⟩|𝐸𝑛⟩ + |𝑚𝑠⟩|𝐸𝑚⟩, (2.3.1)  

where |𝐸𝑛⟩ is the state describing the electric field generated by the electron in the 

orbital |ns⟩, and similarly for |𝐸𝑚⟩ and |𝑚𝑠⟩ for the second term in the sum. The states 

|𝑛𝑠⟩  are stationary and acquire the phase 𝑒−
𝑖𝑡

ℏ
𝐸𝑛   over time, where 𝐸𝑛  is the 

corresponding energy eigenvalue. Hence, the state described in (1) evolving in time 

reads: 

𝑒−
𝑖𝑡
ℏ

𝐸𝑛|𝑛𝑠⟩|𝐸𝑛⟩ + 𝑒−
𝑖𝑡
ℏ

𝐸𝑚|𝑚𝑠⟩|𝐸𝑚⟩. (2.3.2) 

Since the orbitals |ns⟩ are orthogonal, the state of the field on its own is given as: 

𝜌𝐸 =
1

2
|𝐸𝑛⟩⟨𝐸𝑛| +

1

2
|𝐸𝑚⟩⟨𝐸𝑚|. (2.3.3) 

Therefore, the probe atom interacts with the field in this mixed state 
1

2
|𝐸𝑛⟩⟨𝐸𝑛| +

1

2
|𝐸𝑚⟩⟨𝐸𝑚|, which is time independent. The field experienced by the projectile is the 

average of the electric fields from the |𝑛𝑠⟩ and |𝑚𝑠⟩ orbitals. We will now calculate 

this field.  

We begin by considering the outermost electron in a single s-orbital of the target atom. 

Since these orbitals are spherically symmetric, we may obtain the electric field via an 

application of the Gauss Law: 

𝜌(𝑟) = +𝑒𝛿(𝑟) − 𝑒|𝜓(𝑟)|2, (2.3.4) 

𝐸(𝑟) =
1

4𝜋𝜖0𝑟2
∫ 𝜌(𝑟′⃗⃗⃗⃗ )𝑑𝑟′⃗⃗⃗⃗

𝑟

0
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        =  
1

𝜖0𝑟2
∫ 𝜌(𝑟′) 𝑟′2𝑑𝑟′⃗⃗⃗⃗

𝑟

0

. (2.3.5) 

Where 𝜌(𝑟′⃗⃗⃗⃗ ) refers to the total charge distribution, with two terms describing the core 

of the target atom and the electron cloud of its s-orbital (assuming it was given by 

−𝑒|𝜓(𝑟′⃗⃗⃗⃗ ) |2), while 𝐸(𝑟) is the resulting electric field at radial distance 𝑟 from the 

origin. Thanks to symmetry, they are both functions of radial distance only. The full 

wave functions of hydrogenic orbitals are given by: 

𝜓𝑛,𝑙,𝑚(𝑟) = 𝑅𝑛,𝑙(𝑟)𝑌𝑙,𝑚(θ, ϕ). (2.3.6) 

For the s-orbitals, the spherical harmonic component 𝑌𝑙,𝑚  is defined by a simple 

constant 𝑌0,0 =
1

2√π
 . The radial wave function 𝑅𝑛,𝑙(𝑟) at higher levels is not explicitly 

given in existing literature, and therefore we have developed a Python script to 

generate wavefunctions based on defined n, l, and m values. The script utilizes the 

following relations that are known for describing the radial wave functions: 

𝑅(𝜌) = 𝜌𝑙 ∑ 𝛼𝑘

𝑛−𝑙−1

𝑘=0

𝜌𝑘𝑒−
𝜌
2 , (2.3.7) 

𝜌 =
2𝑍

𝑛𝛼0
𝑟, (2.3.8) 

𝛼𝑘+1 = 𝛼𝑘

𝑘 + 𝑙 + 1 − 𝑛

(𝑘 + 1)(𝑘 + 2𝑙 + 2)
. (2.3.9) 

Here, 𝑍 denotes the atomic number, or number of protons in the atom, however within 

this value has been set to 1 throughout all simulations in this thesis. Since we are 

considering both the nucleus and the inner electrons of the target atom to be a single 

point in the centre with a +𝑒 charge, it is functionally identical to a Z=1 hydrogen 

atom and treated as such. It should be mentioned that the Python script also normalizes 

the computed radial wavefunction before returning the requested values of 𝜓. The final 

results were thoroughly checked with existing data for lower excited states to verify 

their accuracy. Figure 2.3.1 shows the radial functions for small as well as larger values 

of 𝑛. 
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Figure 2.3.1 Radial wave functions for n =3 and n =11 s-orbitals (l=0) 

Given concrete values of the radial wave functions, we are able to compute 𝜌  and 

finally 𝐸(𝑟). Figure 2.3.2 shows the resulting field for the example of a lithium target 

superposed between the 3s and 11s orbitals.  

 

Figure 2.3.2 Electric field of a lithium target atom (3s to 11s transition) 
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The next step is to evaluate the field experienced by the probe atom. Its trajectory is 

set to be a straight path off-centre relative to the centre of the target atom, with a 

defined closest approach b that will be varied in the simulations.  

 

Figure 2.3.3 Model of the projectile travelling through the electron cloud 

In the above example, we set the radius of the electron cloud within which the 

dynamics of the model are calculated to 𝑅 = 200𝑎0, where 𝑎0 denotes the Bohr radius. 

This is because after a certain radial distance, the magnitude of the electric field there 

becomes inconsequentially small ( 𝐸(200𝑎0)  verified to be 0.00068 V/m in this 

example), allowing us to ignore these outlaying regions and focus on the interactions 

taking place in those with higher field strengths. As seen in Figure 2.3.3, the projectile 

moves along a straight line through the electron cloud at a constant velocity. This 

trajectory reads: 

𝑧(𝑡) = −𝑅 + 𝑣𝑡 (2.3.10) 

The velocity is a parameter in the simulation, with the projectile always starting at 

𝑧(0) = −𝑅. We also define a final time 𝑡𝑚𝑎𝑥 =
2𝑅

𝑣
, such that the simulation is ended 
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when the projectile reaches 𝑧 = 𝑅. The time interval is divided into 𝑛 steps, where 

Δ𝑡 =
𝑡𝑚𝑎𝑥

𝑛
 . In order to evaluate the field on the path as seen above, we use the relation: 

𝑟(𝑡) = √𝑏2 + 𝑧(𝑡)2 (2.3.11) 

Where 𝑟(𝑡) refers to the radial distance of the probe atom relative to the centre of the 

target atom. It will soon become clear that only the z-component of the field is required, 

which is seen in Figure 2.3.3 to satisfy: 

𝐸𝑧 =  − cos 𝜃 𝐸(𝑟) =  
𝑧(𝑡)

𝑟(𝑡)
𝐸(𝑟(𝑡)) (2.3.12) 

The reason why we attach such focus over the z-component of the electric field lies in 

the dipole coupling. The dipole would be aligned along the z-axis for the entirety of 

its journey. In an open system, the electric dipole would interact with the external 

electric field of the source atom, but in this case, we are operating with a closed system, 

so the orientation of the dipole will remain unaffected. The dipole moment operator of 

the probe atom is given by: 

𝜇 = (
0 𝜇23

𝜇23
∗ 0

) (2.3.13) 

Where the diagonal elements have vanished due to symmetry of the orbitals, and the 

off-diagonal term is given by: 

−𝑒⟨2𝑠|𝑟|3𝑝⟩ 

The components ⟨2𝑠|𝑥|3𝑝⟩ and ⟨2𝑠|𝑦|3𝑝⟩ equal 0, leaving ⟨2𝑠|𝑧|3𝑝⟩ as the only non-

zero term. This gives rise to the off-diagonal term, equal to: 

𝜇23 = −𝑒⟨2𝑠|𝑧|3𝑝⟩ = −𝑒 ∫ 𝜓2𝑠(𝑟) ∙ 𝑧 ∙ 𝜓3𝑝(𝑟)𝑑𝑟  

= −𝑒 ∫ ∫ ∫ 𝜓2𝑠(𝑟) ∙ 𝑧 ∙ 𝜓3𝑝(𝑟)𝑟2 sin 𝜃 𝑑𝑟𝑑𝜃𝑑𝜙
2𝜋

0

𝜋

0

∞

0

 

= −𝑒 ∫ 𝑅2,0(𝑟 cos 𝜃)𝑅3,1𝑟2𝑑𝑟 ∫ Y0,0Y1,0sin 𝜃 𝑑𝜃 ∫ 𝑑𝜙
2𝜋

0

𝜋

0

∞

0

 

= −𝑒 ∫ 𝑅2,0𝑅3,1𝑟3𝑑𝑟 ∫ (
1

2√π
) (√

3

4π
cos 𝜃) cos 𝜃 sin 𝜃 𝑑𝜃 ∫ 𝑑𝜙

2𝜋

0

𝜋

0

∞

0
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= −𝑒 (
1024(3)

9
2

15625
𝑎0) ∙

√3

4𝜋
(

2

3
) ∙ 2𝜋 ≅ −𝑒(5.308416) = −5.3084eV = 𝛿 (2.3.14) 

This returns the magnitude of the electric dipole moment of the probe atom. We now 

compute the probe-target interaction from the Hamiltonian: 

𝐻 = 𝐻0 + 𝐻𝑖𝑛𝑡. (2.3.15) 

Where 𝐻0 describes the energy of the probe in the relevant subspace, and 𝐻𝑖𝑛𝑡 = −𝜇⃗ ∙

𝐸⃗⃗ = −𝜇23𝐸𝑧 . In the matrix form, we thus have: 

𝐻 = (
𝐸2𝑠 −𝐸𝑧𝛿

−𝐸𝑧𝛿 𝐸3𝑝
) . (2.3.16) 

With eigenvalues of the matrix being: 

𝜆±(𝑡) = 𝐸±(𝑡) =
1

2
 (𝐸2𝑠 + 𝐸3𝑝 ± √(𝐸2𝑠 − 𝐸3𝑝)

2
+ (4𝐸𝑧

2(𝑡)𝛿2) ) . (2.3.17) 

Incidentally, the square root term is the so-called Rabi frequency of the system, 

henceforth referred to in a simpler Ω notation. The eigenstates of this Hamiltonian are 

as follows: 

|𝜙+(𝑡)⟩ = √
Ω(t) − (𝐸2𝑠 − 𝐸3𝑝)

2Ω(t)
 |3𝑝⟩ +  √1 −

Ω(t) − (𝐸2𝑠 − 𝐸3𝑝)

2Ω(t)
|2𝑠⟩ (2.3.18) 

   |𝜙+(𝑡)⟩ = 𝛼(𝑡)|3𝑝⟩ + 𝛽(𝑡)|2𝑠⟩ 

   |𝜙−(𝑡)⟩ = 𝛽(𝑡)|3𝑝⟩ − 𝛼(𝑡)|2𝑠⟩ 

The initial state of the dynamical system is the probe atom in the |2𝑠⟩ state. At time 

zero, the energy eigenstates read: 

|2𝑠⟩ = 𝛽(0)|𝜙+(0)⟩ − 𝛼(0)|𝜙−(0)⟩, (2.3.19) 

and the state of the system being: 

|𝜓0⟩ = 𝛽(0)|𝜙+(0)⟩ − 𝛼(0)|𝜙−(0)⟩ = 𝛾0|𝜙+(0)⟩ + 𝛿0|𝜙−(0)⟩. 

At this Δ𝑡 time, the probe will have moved by Δ𝑧 along the z-axis, and hence interact 

with a different electric field. The Hamiltonian now has new eigenvalues and 

eigenstates because the Rabi frequency has changed to Ω(Δ𝑡). We therefore expand 

the state |𝜓Δ𝑡⟩ in the eigenbasis of the Hamiltonian at time Δ𝑡: 
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|𝜓Δ𝑡⟩ = 𝛾0𝑒−
𝑖Δ𝑡
ℏ

𝐸+(0)|𝜙+(0)⟩ + 𝛿0𝑒−
𝑖Δ𝑡
ℏ

𝐸−(0)
 |𝜙−(0)⟩, 

|𝜓Δ𝑡⟩ = 𝛾1|𝜙+(Δ𝑡)⟩ + 𝛿1|𝜙−(Δ𝑡)⟩,  

𝛾1 = ⟨𝜙+(Δ𝑡)|𝜓Δ𝑡⟩, 𝛿1 = ⟨𝜙−(Δ𝑡)|𝜓Δ𝑡⟩ (2.3.21) 

which evolves to 2Δ𝑡 using the eigenvalues at Δ𝑡: 

|𝜓2Δ𝑡⟩ = 𝛾1𝑒−
𝑖Δ𝑡
ℏ

𝐸+(Δ𝑡)|𝜙+(Δ𝑡)⟩ + 𝛿1𝑒−
𝑖Δ𝑡
ℏ

𝐸−(Δ𝑡)|𝜙−(Δ𝑡)⟩,  

|𝜓2Δ𝑡⟩ = 𝛾2|𝜙+(2Δ𝑡)⟩ + 𝛿2|𝜙−(2Δ𝑡)⟩,  

𝛾2 = ⟨𝜙+(2Δ𝑡)|𝜓2Δ𝑡⟩, 𝛿2 = ⟨𝜙−(2Δ𝑡)|𝜓2Δ𝑡⟩ (2.3.22) 

We continue this process for 𝑛 steps Δ𝑡. For completeness, we present the formula for 

the next step of Δ𝑡: 

|𝜓(𝑗+1)Δ𝑡⟩ = 𝛾𝑗𝑒−
𝑖Δ𝑡
ℏ

𝐸+(jΔ𝑡)
 |𝜙+(𝑗Δ𝑡)⟩ + 𝛿𝑗  𝑒−

𝑖Δ𝑡
ℏ

𝐸−(𝑗Δ𝑡)
 |𝜙−(𝑗Δ𝑡)⟩, (2.3.23) 

where 𝛾𝑗 = ⟨𝜙+(𝑗Δ𝑡)|𝜓𝑗Δ𝑡⟩  and 𝛿𝑗 = ⟨𝜙−(𝑗Δ𝑡)|𝜓𝑗Δ𝑡⟩ . This final probability of 

excitation is given by |⟨3𝑝|𝜓𝑡𝑚𝑎𝑥
⟩|

2
, which expands to: 

|3𝑝⟩ = 𝛼(𝑡)|𝜙+(𝑡)⟩ + 𝛽(𝑡)|𝜙−(𝑡)⟩, ⟨3𝑝| = 𝛼(𝑡)⟨𝜙+| + 𝛽(𝑡)⟨𝜙−| 

|𝜓𝑡𝑚𝑎𝑥
⟩ = 𝛾𝑡𝑚𝑎𝑥

|𝜙+(𝑡𝑚𝑎𝑥)⟩ + 𝛿𝑡𝑚𝑎𝑥
|𝜙−(𝑡𝑚𝑎𝑥)⟩ 

|⟨3𝑝|𝜓𝑡𝑚𝑎𝑥
⟩|2 = |𝛼𝑡𝑚𝑎𝑥

𝛾𝑡𝑚𝑎𝑥
⟨𝜙+(𝑡𝑚𝑎𝑥)|𝜙+(𝑡𝑚𝑎𝑥)⟩

+ 𝛽𝑡𝑚𝑎𝑥
𝛿𝑡𝑚𝑎𝑥

⟨𝜙−(𝑡𝑚𝑎𝑥)|𝜙−(𝑡𝑚𝑎𝑥)⟩|2 

𝑃∗ = |⟨3𝑝|𝜓(𝑡)⟩|2 = |𝛼(𝑡𝑚𝑎𝑥)𝛾𝑡𝑚𝑎𝑥
+ 𝛽(𝑡𝑚𝑎𝑥)𝛿𝑡𝑚𝑎𝑥

|
2

(2.3.24) 

From here, we calculate the probability of excitation 𝑃∗, with a final outcome of 𝑃∗(𝑏), 

where 𝑏 is the impact parameter.  

The program utilizes for-loops to repeatedly evaluate an evolving system at each 

timestep until the end of the probe atom’s journey, in order to obtain the final 

probability of excitation for a given range of propagation times or impact parameters.  

2.4 Approach 2: A Semi-Classical Approach 

Similarly to the previous approach, the electric field is obtained from the charge 

distribution 𝜌(𝑟), but with the electronic contribution being given by the superposition 
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𝜓(𝑟) =
1

√2
(𝜓3𝑠 + 𝜓11𝑠), as an example for a model that uses lithium as the target atom 

element. The difference here is that in the semi-classical approach, we do not use the 

average of the electric field of the two states, instead considering the time-dependent 

oscillation of the target atom, and hence the electric field, between the two states. 

Accordingly: 

|𝜓(𝑅, 𝑡)|2 =
1

2
|𝜓𝑎(𝑅, 𝑡)|2 +

1

2
|𝜓𝑏(𝑅, 𝑡)|2 +

1

2
(𝜓𝑎𝜓̅𝑏  + 𝜓̅𝑎𝜓𝑏) 

|𝜓(𝑅, 𝑡)|2 =
1

2
|𝜓𝑎(𝑅, 𝑡)|2 +

1

2
|𝜓𝑏(𝑅, 𝑡)|2 + 𝜓𝑎𝜓𝑏 cos(𝜔𝑡) (2.4.1) 

In this case 𝜓 becomes a function of both radial distance 𝑅 and time 𝑡, and so does the 

charge distribution and electric field. It should be noted, however, that the cos(𝜔𝑡) 

oscillations are only present in the spatial region where the wave functions 𝜓3𝑠 and 

𝜓11𝑠 overlap. An advantage of employing a spherically symmetrical setup is that the 

resulting radial current does not admit a magnetic field, as it is well known that in this 

case the contribution from the motion of charges cancels out with the displacement 

current (Feynman et al., 1964). 

CHAPTER 3 

RESULTS 

3.1 Average Electric Field Results 

3.1.1 Fixed Impact Parameter, Range of Timestep 

We begin with a lithium target atom in superposition between 3s and 11s orbitals. The 

impact parameter has been fixed to 20 Bohr radii, and the program is instructed to 

calculate the probability of excitation over a range of timesteps (in that the probe atom 

takes this amount of time to clear the electron cloud) from 1 to 100 with intervals of 1 

femtosecond. Below is the resulting excitation probability graph: 
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Figure 3.1.1.1 Excitation probability of lithium target atom 

We repeat this for other target atom configurations, for which similar results may be 

obtained: 

  
Figure 3.1.1.2 Excitation probability of hydrogen and potassium target atom  
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Figure 3.1.1.3 Excitation probability of rubidium target atom 

 

When iterating over a range of timesteps, it becomes apparent that there is a periodicity 

in the multiple peaks and valleys that are spread out over the range of timesteps. 

However, the shape of this signal varies between configurations, as seen in the 

following cases: 

 
Figure 3.1.1.4 Excitation probability of sodium target atom 
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Figure 3.1.1.5 Excitation probability of caesium & francium target atoms 

The exact cause for this notable change in signal shape is unclear to us, given that the 

target atom configurations of sodium, caesium, and francium possess similar 

parameters of transition energy and frequency to other configurations but do not share 

similar probabilities of excitation over the timestep range. It is possible that these are 

simply products of their impact parameters being within a region that favours these 

excitation probabilities. 

3.1.2 Fixed Timestep, Range of Impact Parameter 

A change is made to the parameters, in that the timestep is now fixed at a timestep of 

20 femtoseconds. The program then iterates over 𝑏 impact parameters from 0 to 99 

Bohr radii with intervals of 1 Bohr radii. Below are a selection of graphs using these 

parameters: 

 
Figure 3.1.2.1 Excitation probability of lithium target atom 
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We may also compute the probabilities for the other elements of target atoms: 

  

  

  
Figure 3.1.2.2 Excitation probability of other target atoms 

While we find that there does not seem to be any significant difference between target 

atom configurations, the minimum probability of excitation appears to increase as the 

impact parameter increases.  
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3.2 Time-Dependent Electric Field Results 

3.2.1 Fixed Impact Parameter, Range of Timestep 

We repeat the above simulations, but use the second approach to obtain the electric 

field of the target atom.  
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Figure 3.2.1.1 Excitation probability of target atoms 

Outside the cases for sodium, caesium, and francium, there does not appear to be any 

significant difference between the two approaches in the case of a fixed impact 

parameter and increasing timestep. However, the periodicity of the results become 

more visible, especially in the case of the francium target atom configuration. 

Interestingly, the results for the hydrogen target atom configuration are the exact same 

in both approaches.  

3.2.2 Fixed Timestep, Range of Impact Parameter 

Repeating the steps taken in the first approach, the timestep is set to 20 femtoseconds 

over an increasing range of impact parameters. For the lithium target atom 

configuration, we obtain: 

 
Figure 3.2.2.1 Excitation probability of lithium target atom 
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It appears that in using the second approach, the excitation probability of the lithium 

target atom remains higher at certain points even with higher impact parameters, 

whereas noticeable reductions in this probability may also be observed at sporadic 

impact parameters.  

 

 

 

Figure 3.2.2.2 Excitation probability of target atoms 
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CHAPTER 4 

DISCUSSION 

These changes in probability arise from the oscillation of the electric field. Depending 

on the specific impact parameter and timestep, it is possible to significantly increase 

or decrease the probability of excitation simply by taking note of where and when the 

electric field of the target atom may increase or decrease relative to its average field.  

The model used in this thesis is ultimately tailored towards an analysis of electric 

forces. If one is to make any statements about quantum gravity, they would need to re-

interpret the field of the system as gravitational instead of electric. The target atom, 

instead of being in a state of quantum superposition between two energy states, would 

be analogous to a massive thin spherical shell which, depending on the approach used 

to interpret it, either originates the average gravitational field of a larger and smaller 

mass (approach 1), or an oscillating gravitational field which implies a mass 

distribution that changes significantly over time (approach 2). In the simplest analogy, 

the probe atom would be a similar thin spherical shell that has a non-zero probability 

of having its mass distribution altered upon exiting the gravitational field of the larger 

atom. 

As mentioned earlier, several assumptions have been made over the course of this 

thesis to simplify calculations, and it is possible that any physical experiment 

conducted on this model may diverge from the results obtained in this thesis.  

CHAPTER 5 

CONCLUSION 

We have demonstrated that there is a non-negligible difference between the probability 

of excitation when calculated for an average field and an oscillating field in the semi-

classical method under certain configurations.  

We find that the probability of excitation is consistently greater when the impact 

parameter is small, and the probe atom is allowed to propagate in close proximity to 
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the centre of the target atom. As the impact parameter increases, the excitation 

probability decreases, but the rate of this decline is not identical between the two 

approaches, with the semi-classical approach allowing for higher probabilities at 

certain points in the lithium target atom configuration, while in other configurations, a 

lower probability may be obtained instead. 

This discrepancy comes from the electric field produced by the target atom, which 

drives this potential excitation via its z-component. Hence, the distinguishability 

between approaches is only prevalent when the probe atom has a lower probability of 

excitation in the average field model to begin with, and even then, the semi-classical 

method does not necessarily lead to only increases in excitation probability.  

It may be possible to more easily distinguish between these two approaches by 

increasing the strength of the electric field of the target atom, such as by setting its 

transition to be from the ground state to a much higher n quantum state. This would 

serve to provide a lower average field, as a high n quantum state would have a charge 

density spread out over a larger radial distance. Alternatively, increasing the dipole 

moment of the probe atom by selecting a transition with higher spatial separation 

would also serve to increase the contrast between excitation probability in the two 

approaches. However, there is a limit on what probe atom transitions we can use, given 

that the higher excited states of hydrogen have increasingly shorter lifetimes.  
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