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ABSTRACT

Quantum gravity is the last obstacle in the way of a Grand Unified Theory.
Due to the weak nature of the gravitational force and that larger objects
undergo larger decoherence, quantum gravity has not been studied directly.
This thesis aims to provide an analogue for a possible experiment by
studying the electric field generated by an atom in quantum superposition,
drawing from formal analogies between the gravitational and electric
force, as well as an idea of what results future experiments using this set-

up might obtain.
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CHAPTER 1

INTRODUCTION

1.1 Background

The research described in this thesis is motivated by the questions in the theory of
quantum gravity, which presents itself as one of the more prominent unresolved
problems in modern physics. It refers to the last missing puzzle piece in the Standard
Model: a description of gravitational physics using the principles of quantum
mechanics. It would apply primarily to environments and situations where the physics
of neither regime can be ignored, such as in the spaces within close proximity to black
holes and highly compact astrophysical objects, and the primordial universe before
rapid expansion would take place. The basic issue studied in this thesis is how one

would describe the gravity of a massive object in spatial quantum superposition.
1.2 Literature Review

Currently, there exist no direct experiments on such gravitational configurations on
account of two contradictory demands: (i) gravity is an inherently weak force, and thus
necessitates the usage of particles of considerable mass and size to impart a significant
gravitational field, and (i1) large objects experience large decoherence, making the
preservation of quantum superpositions difficult. Hence, the focus on gravitational
fields here is substituted for the simulation and study of electric fields inside atoms

prepared in quantum superposition states.

The main reason for this is that the electric force is several orders of magnitude
stronger than the gravitational force, which makes the predictions within this thesis
that are closer to that which can be tested in laboratories. Furthermore, under gravito-
electromagnetism, the Einstein’s equations in the regime of weak gravitational fields
can be linearized to equations analogous to those of Maxwell’s, bringing a direct
connection between the electric regime and the gravitational regime (Clark & Tucker,

2000).

The thesis proposes an experiment where a projectile neutral atom is shot towards

target atoms, which are prepared in suitable and relatively simple conditions to study
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superposition states. As such, the proposed setup is reminiscent of scattering
experiments. However, as opposed to conventional scattering experiments, there is less
interest in the detailed trajectory of the projectile or statistics of deflections, and the
state of target atom is itself very exotic. The figure of merit in this thesis is the
probability that the projectile gets excited. The core idea is that this probability will be
different across the various approaches in describing the field of the superposed
electrons in the atom. There are at least three approaches to do this, which will now be

briefly reviewed and later expanded upon in the thesis.

In the first approach, the field generated by the electrons is treated as a separate degree
of freedom, and hence in quantum formalism it is described by its own Hilbert space.
For gravity, this approach dates back to the thought experiment proposed by Richard
Feynman in the 1957 Chapel Hill seminar (Marletto & Vedral, 2017) and has also been
explicitly used in calculations of gravitational entanglement by Marletto & Vedral
(2017b) and Bose et al. (2017). Accordingly, in the electric-field analogue, one
describes an electron and its field by the state in two Hilbert spaces: |electron)|field),
where the first space describes the electronic configuration (ignoring spin), and the
second space describes the electric field. If the electron is superposed across different
orbitals, the corresponding electron-field state is assumed to be
|electron 1)|field 1) + |electron 2)|field 2), where the first kets represent the two
spatial configurations of the electron, and for the second kets, the field generated when
the electron is in the corresponding configuration. If the projectile is now moving
through a region of such superposition, it interacts only with the field (all interactions
are through the field) and it is shown in the thesis that the state of the field alone is a
mixed and time independent state. For slowly moving projectiles, the probability of

exciting them is negligible.

In the second approach, the so-called semi-classical approach, the field generated by
the quantum superposition is calculated by assuming that charge density is
proportional to the quantum probability of finding the particle in a given point in space.
For gravity, such assumptions appeared in the Schrodinger-Newton model (Bassi et al.,
2017), and for electrodynamics they have been thoroughly investigated by Jaynes
(1978). From the present proposal’s point of view, the superpositions considered are
not the eigenstates of the target atoms, and hence they evolve in time. Accordingly, the

charge distribution changes in time, leading to the time-dependent electric and
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magnetic fields that are computed from the usual Maxwell equations. Changes in the
charge density are proportional to the quantum probability of locating the electron
around a given point, while the current density is proportional to the quantum
probability current. When a projectile propagates through a region of superposition, it
experiences time dependent fields and hence the intuition is that the probability of
excitation grows as compared with the first approach. This is indeed confirmed by
calculations performed later in this thesis. In this way, one can experimentally verify

which of the approaches is not correct.

Finally, this thesis will also briefly mention a third approach, which is not something
that will be focused on. One could also run this experiment through the machinery of
quantum electrodynamics via a field-theoretical approach and compute the probability
of excitation in this model. While one would expect the outcomes of such an approach
to be closest to real experiments, this approach is beyond the scope of present thesis.
The main goal of this thesis is to provide theoretical evidence that the probability of

excitation of the projectile can be distinguished between the first two approaches.



CHAPTER 2

METHODOLOGY

2.1 The Main Idea

The main idea of this thesis can be represented by Figure 2.1.1.

Figure 2.1.1 A hydrogen projectile atom (H) travels through the electron cloud of the larger
target atom (blue circles), with impact parameter . We compute the probability to excite the
projectile atom and show that it is different in different approaches to describe the field

generated by the cloud.

A neutral target atom is prepared in a state of superposition between two orbital energy
levels. In the interest of simplifying matters, we set these two states to be s-orbitals of
alkali metals, as they have no orbital angular momentum and are hence spherically
symmetric. Selecting alkali metals allows us to focus on their single outermost valence
electron, while assuming the rest of the atomic structure to be effectively replaced by
a +e particle at the centre of the atom. The resulting configuration is a hydrogen-like
system, with the superposition involving the electron taking on different principal

quantum numbers 7, but maintaining / = 0 and m = 0.



Here, we encounter an issue. This s-orbital to s-orbital transition is dipole forbidden,
which raises questions about how exactly such a configuration could be prepared in
the target atom. We note that this can be achieved with a Raman configuration of two
lasers, which drive the transitions between the s-orbitals and an additional intermediate

state for which the dipole transition is allowed.

Another neutral atom is prepared to serve as a projectile, propagating through the
electron cloud of the target atom. For simplicity, we assume that the path of this
projectile atom is a straight line, i.e. the electric field of the target atom is
approximately uniform across the wave function of the projectile such that no net force
acts on the projectile. In such a case, it is also plausible to invoke dipole approximation
and treat the projectile’s internal electronic configuration as a two-level system,
involving energy levels that closely match the possible oscillations in the field of the
target atoms. The thesis will go into further detail on the steps executed, but we found

it appropriate to clarify the physical assumptions made before doing so.
2.2 Establishing Relevant Transitions

In order to ensure our setup is physically plausible, we must first determine the species
of the target and projectile atoms, and check if there exists a transition between energy
levels in the projectile atom that has a frequency comparable to the energy difference
between the superposed states in the target atom, which, in the semi-classical approach,

would be the frequency of the oscillating field.

The hydrogen atom is selected to serve as the probe in this setup, primarily due to its
simplicity. However, we note that the probe cannot be prepared in its ground state, as
exciting it to a higher energy level from the ground state requires more energy than
any difference of energy states of the heavier atom, exceeding even their ionization
energies, assuming the absence of external electric and/or magnetic fields. Hence, we
opt to use the 2s to 3p transition, which is dipole allowed and incurs a less expensive
energy cost of 1.889eV. The 2s state of hydrogen is also meta-stable state for its
electron to occupy with a lifetime of 0.12 seconds. The probe atom is expected to
complete its trajectory within a time frame on the order of femtoseconds, so we are not

concerned with the spontaneous emission of the hydrogen projectile to the ground state.

With this probe atom transition in mind, we select target alkali metals transitions with

energies closely matching the 2s to 3p orbital transition.
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Transition
Source Atom  Lower State Upper State  Lower eV  Upper eV
Energy (eV)

H 2s 4s 10.199 12.749 2.550
Li 3s 11s 3.373 5.271 1.897
Na 4s 17s 3.191 5.084 1.892
K 4s 5s 0 2.607 2.607
Rb 5s 6s 0 2.496 2.496
Cs 6s 7s 0 2.298 2.298
Fr 7s 8s 0 2.447 2.447

Table 2.2.1 Transition energy data from NIST

Table 2.1 organizes values derived from the NIST database of energy levels and
transitions. It should be noted that a closer match to the probe atom transition is
obtained for lithium and sodium, where the transition is between the first excited state
and a much higher Rydberg state. Conversely, for heavier elements, the match is less
accurate, with transitions between the ground state and first excited state for heavier
elements. This is because, as far as the NIST is concerned, there exist no other
transitions for these heavier elements that can overcome the 2s to 3p energy

requirement.

With our table of accepted transitions, we can convert the transition energies into

transition frequencies that will be relevant for upcoming calculations:

wh
E=hf = o’
2r-E  1.602 x 107°E[eV]
w = A = 7 .

We may obtain the following table relevant for upcoming calculations.

Source Atom  Transition Frequency w (in petahertz PHz)

H 3.874
Li 2.883
Na 2.874
K 3.961
Rb 3.792
Cs 3.491
Fr 3.718

Table 2.2.2 Transition frequencies of selected transitions by element



As this projectile atom, or probe atom, travels through the electron cloud, it is
subjected to different magnitudes of electric fields. Hence, even when the field is static
in time, its charge variations in space are perceived by the projectile atom as a time

dependent field and accordingly there is a chance of excitation even in this case.
2.3 Approach 1: A Hilbert Space Description

In the first approach, we will assume that the target atom and field state are described

by:
[ns)En) + Ims)| Ep), (2.3.1)

where |E,,) is the state describing the electric field generated by the electron in the

orbital |ns), and similarly for |E,,,) and |ms) for the second term in the sum. The states

it
|ns) are stationary and acquire the phase e ntm over time, where E, is the
corresponding energy eigenvalue. Hence, the state described in (1) evolving in time

reads:

_itg _itg
e n"ns)E,) + e R ms)| Ep,). (2.3.2)

Since the orbitals |ns) are orthogonal, the state of the field on its own is given as:
1 1
P = 5 1E)En| + 5 | B} (B (233)

Therefore, the probe atom interacts with the field in this mixed state % |E Eq| +

% |Eu){Em|, which is time independent. The field experienced by the projectile is the
average of the electric fields from the |ns) and |ms) orbitals. We will now calculate

this field.

We begin by considering the outermost electron in a single s-orbital of the target atom.
Since these orbitals are spherically symmetric, we may obtain the electric field via an

application of the Gauss Law:

p(¥) = +ed(¥) — el (2.3.4)




r

1 -
= e i p(r)r'?dr’. (2.3.5)

Where p(?’)) refers to the total charge distribution, with two terms describing the core
of the target atom and the electron cloud of its s-orbital (assuming it was given by
—e|1/)(?7) |2), while E(r) is the resulting electric field at radial distance r from the
origin. Thanks to symmetry, they are both functions of radial distance only. The full

wave functions of hydrogenic orbitals are given by:

ll}n,l,m(?) = Rn,l(r)yl,m(e: (I)) (2-3-6)

For the s-orbitals, the spherical harmonic component Y, ,, is defined by a simple
1
2Vm’

given in existing literature, and therefore we have developed a Python script to

constant Yy o = The radial wave function R,, ;(r) at higher levels is not explicitly

generate wavefunctions based on defined n, /, and m values. The script utilizes the

following relations that are known for describing the radial wave functions:

n—-Il-1
p
R =p' Y aphe’?, (2.3.7)
k=0
27
p=—-Tr, (2.3.8)
na,
k+l+1—n

= . 2.3.
et = QT Dk + 21+ 2) (23.9)

Here, Z denotes the atomic number, or number of protons in the atom, however within
this value has been set to 1 throughout all simulations in this thesis. Since we are
considering both the nucleus and the inner electrons of the target atom to be a single
point in the centre with a +e charge, it is functionally identical to a Z=1 hydrogen
atom and treated as such. It should be mentioned that the Python script also normalizes
the computed radial wavefunction before returning the requested values of 1. The final
results were thoroughly checked with existing data for lower excited states to verify
their accuracy. Figure 2.3.1 shows the radial functions for small as well as larger values

of n.



Radial Wave Function R(r)

0.05 Radial Wave Function for n=3 & n=11

— n=3

n=11
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0.03 A

0.02 A

0.01 +

0.00 - B |
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Radial Distance (Bohr Radii)

Figure 2.3.1 Radial wave functions for » =3 and n =11 s-orbitals (/=0)

Given concrete values of the radial wave functions, we are able to compute p and

finally E (7). Figure 2.3.2 shows the resulting field for the example of a lithium target

superposed between the 3s and 11s orbitals.

Electric Field (V/m)

Electric Field over Radial Distance, Lithium 3s to 11s
0.040

—— Electric Field

0.035

0.030

0.025

0.020

0.015 A

0.010 A

0.005 A

0.000

T T T T T T
o] 50 100 150 200 250 300 350
Radial Distance (Bohr radii)

Figure 2.3.2 Electric field of a lithium target atom (3s to 11s transition)



The next step is to evaluate the field experienced by the probe atom. Its trajectory is
set to be a straight path off-centre relative to the centre of the target atom, with a

defined closest approach b that will be varied in the simulations.

Z

z =
tmax

Position at t=At
E(r,At)

Position at =0/ p=20a4q Z0= R

Figure 2.3.3 Model of the projectile travelling through the electron cloud

In the above example, we set the radius of the electron cloud within which the
dynamics of the model are calculated to R = 200a,, where a, denotes the Bohr radius.
This is because after a certain radial distance, the magnitude of the electric field there
becomes inconsequentially small (E(200a,) verified to be 0.00068 V/m in this
example), allowing us to ignore these outlaying regions and focus on the interactions
taking place in those with higher field strengths. As seen in Figure 2.3.3, the projectile
moves along a straight line through the electron cloud at a constant velocity. This

trajectory reads:
z(t) = —-R+ vt (2.3.10)

The velocity is a parameter in the simulation, with the projectile always starting at

z(0) = —R. We also define a final time t,,,4, = %, such that the simulation is ended
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when the projectile reaches z = R. The time interval is divided into n steps, where

t .
At = % . In order to evaluate the field on the path as seen above, we use the relation:

r(t) = b2 + 2(£)? (2.3.11)

Where r(t) refers to the radial distance of the probe atom relative to the centre of the
target atom. It will soon become clear that only the z-component of the field is required,

which is seen in Figure 2.3.3 to satisfy:
z(t
E,= —cosOE(r) = %E(r(t}) (2.3.12)

The reason why we attach such focus over the z-component of the electric field lies in
the dipole coupling. The dipole would be aligned along the z-axis for the entirety of
its journey. In an open system, the electric dipole would interact with the external
electric field of the source atom, but in this case, we are operating with a closed system,
so the orientation of the dipole will remain unaffected. The dipole moment operator of

the probe atom is given by:

0 !123)
=( " 23.13
P (#23 : (2.3.13)

Where the diagonal elements have vanished due to symmetry of the orbitals, and the

off-diagonal term is given by:
—e(2s|7|3p)

The components (2s|x|3p) and (2s|y|3p) equal 0, leaving (2s|z|3p) as the only non-

zero term. This gives rise to the off-diagonal term, equal to:

oy = —e(252|3p) = —e j Yoo () - 2+ sy (D)7

0 ~TT 2T
- _ oYL V2 i
= ej;) j;) L Yo () -z Y3 (F)7* sin B drdOd ¢

0o T 21T
= —e j RZ,O (T COS 9)R3‘1T2dr f YO‘OYLoSin 7] d9 d¢
0 0 0

e} b4 1 3 2T
= —e R, R r3er (—) —cos6 | cosOsin6db d
jo 2,0R31 MUY yp . ¢
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9
1024(3)2 V3 /2
= —e| e E(E) 21 = —e(5.308416) = —5.3084eV = § (2.3.14)

This returns the magnitude of the electric dipole moment of the probe atom. We now

compute the probe-target interaction from the Hamiltonian:
H = HO +Hi7‘l.t' (2.3.15)

-

Where H,, describes the energy of the probe in the relevant subspace, and Hy,,; = —p -

E= —U,3E, . In the matrix form, we thus have:
_( Exs  —E;b
H = (—Ezd B ) (2.3.16)

With eigenvalues of the matrix being:

2:(t) =E,(t) = % <E25 + E3p, £ \/(Ezs — 153,[,)2 + (4E2(t)8%) ) (2.3.17)

Incidentally, the square root term is the so-called Rabi frequency of the system,
henceforth referred to in a simpler (1 notation. The eigenstates of this Hamiltonian are

as follows:

Q) — (Eys — E Q) — (Ey — E
I¢+(t)>=\/ © Z(ta) ) |3p)+\/1— ® Z(ta) 37")|25) (2.3.18)

|$+(©) = a(®)|3p) + B(B)]2s)
|¢-(6)) = B(®)|3p) — a(t)|2s)
The initial state of the dynamical system is the probe atom in the |2s) state. At time

zero, the energy eigenstates read:

12s) = B(0)|¢.(0)) — a(0)|$-(0)), (2.3.19)

and the state of the system being:

o) = B(0)|¢.(0)) — a(0)|$-(0)) = yolp+(0)) + 8ol (0)).

At this At time, the probe will have moved by Az along the z-axis, and hence interact
with a different electric field. The Hamiltonian now has new eigenvalues and
eigenstates because the Rabi frequency has changed to Q(At). We therefore expand

the state |Y,;) in the eigenbasis of the Hamiltonian at time At:

12



Wae) = oo~ A, (0)) + S0e~ 7 5O [p_(0)),
[Yae) = yild (AL)) + 61|p_(AL)),
Y1 = (D (A |Par), 01 = (p_(A) [Par) (2.3.21)

which evolves to 2At using the eigenvalues at At:

ane) = yie~ R EEO16. (AD) + 8,0~ K E-CO6_(aD)),
ane) = V2ldbs (2AD) + 5,1 (2A0)),

Y2 = (P (ALY [WY2ar), 02 = (P_(2A0) |[Y2ar) (2.3.22)

We continue this process for n steps At. For completeness, we present the formula for

the next step of At:

[Wsac) = vie™ 750 6, GA0) + 8 e RN (A, (2323)
where y; = (¢ (GAD |[Wjar) and 8 = (p_(jAL)|pjar) . This final probability of
excitation is given by |(3p[th,_)|*, which expands to:

13p) = a(®)|¢+ () + B(O)|P- (D)), Bp| = a(t)($+] + B(E){(P-|
[Vtmax) = Vemax| P+ (Emax)) + 6t | P—(tan))

|<3p|l/)tmax>|2 = |atmathmax(¢+(tmax)|¢+(tmax))
+ ﬁtmax6tmax<¢—(tmax) |¢— (tmax)>|2

P* = |Bpp ()2 = |a(tmar)Ve,, + BEmax)Oe,. | (2.3.24)

From here, we calculate the probability of excitation P*, with a final outcome of P*(b),

where b is the impact parameter.

The program utilizes for-loops to repeatedly evaluate an evolving system at each
timestep until the end of the probe atom’s journey, in order to obtain the final

probability of excitation for a given range of propagation times or impact parameters.
2.4 Approach 2: A Semi-Classical Approach

Similarly to the previous approach, the electric field is obtained from the charge

distribution p(r), but with the electronic contribution being given by the superposition

13



Y(r) = % (Y35 + P115), as an example for a model that uses lithium as the target atom

element. The difference here is that in the semi-classical approach, we do not use the
average of the electric field of the two states, instead considering the time-dependent
oscillation of the target atom, and hence the electric field, between the two states.

Accordingly:

1 1 1 _ _
lY(R,O)|* = 5 [P, (R, t)|* + 5 lYp (R, )]* + E(wawb + Yo Pp)
1 1
YR, )| = > [P (R, £)|* + > [Yp (R, )| + Yy, cos(wt) (2.4.1)

In this case 1 becomes a function of both radial distance R and time t, and so does the
charge distribution and electric field. It should be noted, however, that the cos(wt)
oscillations are only present in the spatial region where the wave functions 35 and
115 overlap. An advantage of employing a spherically symmetrical setup is that the
resulting radial current does not admit a magnetic field, as it is well known that in this
case the contribution from the motion of charges cancels out with the displacement

current (Feynman et al., 1964).

CHAPTER 3

RESULTS

3.1 Average Electric Field Results
3.1.1 Fixed Impact Parameter, Range of Timestep

We begin with a lithium target atom in superposition between 3s and 11s orbitals. The
impact parameter has been fixed to 20 Bohr radii, and the program is instructed to
calculate the probability of excitation over a range of timesteps (in that the probe atom
takes this amount of time to clear the electron cloud) from 1 to 100 with intervals of 1

femtosecond. Below is the resulting excitation probability graph:
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Prob. of Excitation in Lithium 3s to 11s by Timestep Range
(b=20, Average Field)
100 |

80

60

Probability of Excitation (%)

20

0 20 40 60 80 100
Timestep (femtoseconds)

Figure 3.1.1.1 Excitation probability of lithium target atom

We repeat this for other target atom configurations, for which similar results may be

obtained:
Prob. of Excitation in Hydrogen 2s to 4s by Timestep Range Prob. of Excitation in Potassium 4s to 5s by Timestep Range
(b=20, Average Field) (b=20, Average Field)
100 H 100
a0 \. | l | ] o a0 ‘ l
: | A q : ﬂ
s 2
o 604 H & 60
! | v
w w
5 s
g 40 | 1 l g 40 4 T T
o Qo
© 3
° £
= 20 | = 20
0 | 0
0 20 40 60 80 100 0 20 40 60 80 100
Timestep (femtoseconds) Timestep (femtoseconds)

Figure 3.1.1.2 Excitation probability of hydrogen and potassium target atom
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Probability of Excitation (%)

When iterating over a range of timesteps, it becomes apparent that there is a periodicity

in the multiple peaks and valleys that are spread out over the range of timesteps.

However, the

Prob. of Excitation in Rubidium 5s to 6s by Timestep Range
(b=20, Average Field)
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Figure 3.1.1.3 Excitation probability of rubidium target atom

shape of this signal varies between configurations, as seen in the

following cases:

Probability of Excitation (%)

Prob. of Excitation in Sodium 4s to 17s by Timestep Range
(b=20, Average Field)
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Figure 3.1.1.4 Excitation probability of sodium target atom
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Prob. of Excitation in Caesium 6s to 7s by Timestep Range
(b=20, Average Field)

Prob. of Excitation in Francium 7s to 8s by Timestep Range
(b=20, Average Field)
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Figure 3.1.1.5 Excitation probability of caesium & francium target atoms

The exact cause for this notable change in signal shape is unclear to us, given that the

target atom configurations of sodium, caesium, and francium possess similar

parameters of transition energy and frequency to other configurations but do not share

similar probabilities of excitation over the timestep range. It is possible that these are

simply products of their impact parameters being within a region that favours these

excitation probabilities.

3.1.2 Fixed Timestep, Range of Impact Parameter

A change is made to the parameters, in that the timestep is now fixed at a timestep of

20 femtoseconds. The program then iterates over b impact parameters from 0 to 99

Bohr radii with intervals of 1 Bohr radii. Below are a selection of graphs using these

parameters:
Prob. of Excitation in Lithium 3s to 11s by Impact Parameter
(20femtosecond timestep, Average Field)
100
80 ‘ v
g
: !
a
5
2 40 A
E
2
2
% 201
0- L
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Impact Parameter (Bohr Radii)

Figure 3.1.2.1 Excitation probability of lithium target atom
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We may also compute the probabilities for the other elements of target atoms:

Prob. of Excitation in Hydrogen 2s to 4s by Impact Parameter Prob. of Excitation in Sedium 4s to 17s by Impact Parameter
(20 femtosecond timestep, Average Field) (20 femtosecond timestep, Average Field)
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Figure 3.1.2.2 Excitation probability of other target atoms
While we find that there does not seem to be any significant difference between target
atom configurations, the minimum probability of excitation appears to increase as the

impact parameter increases.
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3.2 Time-Dependent Electric Field Results
3.2.1 Fixed Impact Parameter, Range of Timestep

We repeat the above simulations, but use the second approach to obtain the electric

field of the target atom.

Prob. of Excitation in Hydrogen 2s to 4s by Timestep Range Prob. of Excitation in Lithium 3s to 11s by Timestep Range
(b=20, Time-Dep Field) (b=20, Time-Dep Field)
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Prob. of Excitation in Francium 7s to 8s by Timestep Range
(b=20, Time-Dep Field)
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Figure 3.2.1.1 Excitation probability of target atoms
Outside the cases for sodium, caesium, and francium, there does not appear to be any
significant difference between the two approaches in the case of a fixed impact
parameter and increasing timestep. However, the periodicity of the results become

more visible, especially in the case of the francium target atom configuration.

Interestingly, the results for the hydrogen target atom configuration are the exact same

in both approaches.
3.2.2 Fixed Timestep, Range of Impact Parameter

Repeating the steps taken in the first approach, the timestep is set to 20 femtoseconds
over an increasing range of impact parameters. For the lithium target atom
configuration, we obtain:

Prob. of Excitation in Lithium 3s to 11s by Impact Parameter
(20 femtosecond timestep, Time-Dep Field)

M r

100
80 | 1

60 4

40 1

Probability of Excitation (%)

204

T T T T T T
0 20 40 60 80 100
Impact Parameter (Bohr Radii)

Figure 3.2.2.1 Excitation probability of lithium target atom

20



It appears that in using the second approach, the excitation probability of the lithium
target atom remains higher at certain points even with higher impact parameters,

whereas noticeable reductions in this probability may also be observed at sporadic

impact parameters.

Prob. of Excitation in Hydrogen 2s to 4s by Impact Parameter
(20 femtosecond timestep, Time-Dep Field)

Prob. of Excitation in Sedium 4s to 17s by Impact Parameter
(20 femtosecond timestep, Time-Dep Field)
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Figure 3.2.2.2 Excitation probability of target atoms
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CHAPTER 4

DISCUSSION

These changes in probability arise from the oscillation of the electric field. Depending
on the specific impact parameter and timestep, it is possible to significantly increase
or decrease the probability of excitation simply by taking note of where and when the

electric field of the target atom may increase or decrease relative to its average field.

The model used in this thesis is ultimately tailored towards an analysis of electric
forces. If one is to make any statements about quantum gravity, they would need to re-
interpret the field of the system as gravitational instead of electric. The target atom,
instead of being in a state of quantum superposition between two energy states, would
be analogous to a massive thin spherical shell which, depending on the approach used
to interpret it, either originates the average gravitational field of a larger and smaller
mass (approach 1), or an oscillating gravitational field which implies a mass
distribution that changes significantly over time (approach 2). In the simplest analogy,
the probe atom would be a similar thin spherical shell that has a non-zero probability
of having its mass distribution altered upon exiting the gravitational field of the larger

atom.

As mentioned earlier, several assumptions have been made over the course of this
thesis to simplify calculations, and it is possible that any physical experiment

conducted on this model may diverge from the results obtained in this thesis.

CHAPTERS

CONCLUSION

We have demonstrated that there is a non-negligible difference between the probability
of excitation when calculated for an average field and an oscillating field in the semi-

classical method under certain configurations.

We find that the probability of excitation is consistently greater when the impact

parameter is small, and the probe atom is allowed to propagate in close proximity to
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the centre of the target atom. As the impact parameter increases, the excitation
probability decreases, but the rate of this decline is not identical between the two
approaches, with the semi-classical approach allowing for higher probabilities at
certain points in the lithium target atom configuration, while in other configurations, a

lower probability may be obtained instead.

This discrepancy comes from the electric field produced by the target atom, which
drives this potential excitation via its z-component. Hence, the distinguishability
between approaches is only prevalent when the probe atom has a lower probability of
excitation in the average field model to begin with, and even then, the semi-classical

method does not necessarily lead to only increases in excitation probability.

It may be possible to more easily distinguish between these two approaches by
increasing the strength of the electric field of the target atom, such as by setting its
transition to be from the ground state to a much higher » quantum state. This would
serve to provide a lower average field, as a high n quantum state would have a charge
density spread out over a larger radial distance. Alternatively, increasing the dipole
moment of the probe atom by selecting a transition with higher spatial separation
would also serve to increase the contrast between excitation probability in the two
approaches. However, there is a limit on what probe atom transitions we can use, given

that the higher excited states of hydrogen have increasingly shorter lifetimes.
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