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Abstract

The cosmological constant Λ is by far the simplest and most consistent way to model

the accelerating expansion of our universe. In this project, we investigate the mass and

length scale in which a particle should be superposed so that the effects induced by the

cosmological constant dominate the dynamics of the particle in the Schrödinger-Newton

approach. Within this framework, we extend the existing Schrödinger-Newton equa-

tion by replacing the Newtonian gravitational potential with a potential that includes

the effects of self-gravitating interaction and dark energy in the form of the cosmological

constant. A spherically symmetric Gaussian wave function is used as our initial condition

and its evolution under the “Schrödinger-Newton-Lambda equation” is solved numeri-

cally. First, we were able to recover most of the Schrödinger-Newton solutions found

previously. The investigation on the mass and length scale showed terrestrial required

values of approximately 10−20 kg superposed over the distance above 50 m. Unfortu-

nately, the time required to observe the effects of cosmological constant for terrestrial

particles turns out to be truly astronomical.
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Chapter 1

Introduction

In this chapter, we will discuss the background and motivation for this project and ex-

plain some analytical derivations involving quantum mechanics and general relativity,

which will be useful in the subsequent chapters. This includes obtaining the potential

from the Newtonian limit of the Einstein’s field equations and the evolution of a spher-

ically symmetric Gaussian wave function under the canonical Schrödinger equation.

1.1 Background and Motivation

According to the theory of quantum mechanics, arbitrary initial wave function has a

completely deterministic time evolution. Given the Hamiltonian and the initial state,

we can in principle solve the time-dependent Schrödinger equation to obtain the state

at any given time. This time-evolution is a continuous and non-random process. How-

ever, a measurement process causes the wave function to collapse discontinuously into

a random eigenstate of the measured observable. These two incompatible ways of state

evolution prompt investigations on the possibility of their unification.

A possible unification in the context of position measurement is that gravity contributes

to the collapse of the wave function. The ideas along this line have been studied by

Károlyházy [1], Diósi [2], and others [3, 4]. The investigation by Diósi revolves around

the uncertainty in the position of the center of mass of a macroscopic object. From clas-

sical mechanics, we know that macroscopic objects have a well-defined position at any

given time. However, free particles evolving under the canonical Schrödinger equation

have an increasingly larger uncertainty in the position of the center of mass. This con-

tradiction can be resolved by conceptually forming potential wells for massive objects.
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CHAPTER 1. INTRODUCTION

We want macroscopic objects to have deep and narrow potential wells so that their wave

functions are nearly stationary. On the other hand, we require microscopic objects to

have shallow and wide potential wells so that we do not change their behaviour as pre-

dicted by quantum mechanics. A logical postulate is that the size of the potential well

is related to mass of the objects, and thus gravitational interaction should play a role in

the process. The semiclassical approach by Møller [5] and Rosenfeld [6] is one possible

way in applying gravitational interaction in quantum mechanics. In the linearized static

weak-field limit, this approach results in the Schrödinger-Newton (SN) equation as pro-

posed by Diósi [2].

The discovery of dark energy [7], an unknown form of energy causing the universe to

expand in an accelerating rate, could have played a role in any model of wave function

collapse induced by gravitational interaction. The Lambda Cold Dark Matter (ΛCDM)

model, also known as the standard cosmological model, has the most consistent agree-

ment with the current observational data [8]. The ΛCDM universe contains dark energy

in the form of the cosmological constant. As far as we know, the effects due to the

existence of dark energy in any model of wave function collapse induced by gravitational

interaction has yet to be studied.

In this thesis, we aim to include the effects of dark energy in the form of the cosmological

constant into the existing SN equation and study the way it affects the SN model. We

will first derive a potential that includes the effects of dark enery from Einstein’s field

equations and use it in place of the Newtonian potential in the SN equation. We will

call this modified SN equation as the Schrödinger-Newton-Lambda (SNΛ) equation from

now on. The evolution of the wave functions under the SNΛ equation will be obtained

numerically.

1.2 Newtonian Limit of Einstein’s Field Equations

We will use the following equation, which is the semiclassical approach by Møller and

Rosenfeld, as our starting point in obtaining the potential:

Gµν + Λgµν =
8πG
c4
〈ψ| T̂µν |ψ〉 (1.2.1)

Here, Gµν is the Einstein’s tensor, gµν is the metric tensor, and G is the Newtonian

gravitational constant. The energy-momentum tensor on the RHS of Einstein’s field

2



CHAPTER 1. INTRODUCTION

equations is replaced with the expectation value of the energy-momentum tensor oper-

ator in the state ψ. Equation (1.2.1) can be interpreted as treating gravitational field

classically while treating matter quantum mechanically. This approach causes nonlin-

earities in quantum mechanics as discussed by Kibble and Randjbar-Daemi [9], in the

sense that the wave function depends on the metric and the metric depends on the

wave function. Regardless of whether the semiclassical approach causes nonlinearities,

equation (1.2.1) is too difficult to be tackled directly. We therefore, make the following

assumptions, known as the Newtonian limit:

1. The gravitational field does not change significantly over time (i.e., static field).

Thus, we can drop all the time derivatives of the field.

2. The sources produce weak gravitational field and hence, the metric is a nearly flat

manifold. The line element for a small curvature produced by time-independent

weak sources can be expressed as follows:

ds2 = −
(

1 +
2Φ

c2

)
(cdt)2 +

(
1− 2Φ

c2

)
(dx2 + dy2 + dz2) (1.2.2)

where Φ is the Newtonian gravitational potential. Thus, the metric can be ex-

pressed in the form:

gµν = ηµν + hµν (1.2.3)

where ηµν = diag (−1, 1, 1, 1) is the Minkowski metric and |hµν | � 1 can be thought

of as small perturbations. We will treat gravity as a linearized theory by ignoring

the second order and higher order terms in the perturbation.

3. The energy-momentum tensor of a matter field consisting of noninteracting inco-

herent matter moving with a 3D velocity ~u is given by

Tαβ = ρ0u
αuβ = ρ


c2 cux cuy cuz

cux uxux uxuy uxuz

cuy uyux uyuy uyuz

cuz uzux uzuy uzuz

 (1.2.4)

where ρ0 is the proper density. For a noninteracting matter-energy distribution

that does not carry a net flow of momentum, T 00 is much greater than T ij . Thus,

we will only consider the 00 component of the energy-momentum tensor.

3



CHAPTER 1. INTRODUCTION

Taking into account these assumptions (in the Newtonian limit), equation (1.2.1) re-

duces to the following Poisson’s equation (the details of the derivation can be found in

Appendix A):

∇2Φ(~r, t) = 4πGm|ψ(~r, t)|2 − Λc2 (1.2.5)

This equation can be solved using the method of Green’s function to give us the following

solution:

Φ(~r, t) = −Gm
∫
|ψ(~r′, t)|2

|~r − ~r′|
d3~r′ +

Λc2

4π

∫
1

|~r − ~r′|
d3~r′ (1.2.6)

In this thesis, the value of the cosmological constant is taken to be [10]:

Λ = (1.36284± 0.00028)× 10−52m−2 (1.2.7)

1.3 The Schrödinger-Newton Equation

In this thesis, we will only consider the simplest form of the SN equation: the case for

a single particle with mass m. The SN equation has the form:

− ~2

2m
∇2ψ(~r, t) +mΦ(~r, t)ψ(~r, t) = i~

∂

∂t
ψ(~r, t) (1.3.1)

where Φ(~r, t) is given by

Φ(~r, t) = −Gm
∫
|ψ(~r′, t)|2

|~r − ~r′|
d3~r′ (1.3.2)

Substituting (1.3.2) into (1.3.1) gives us

− ~2

2m
∇2ψ(~r, t)− Gm2

∫
|ψ(~r′, t)|2

|~r − ~r′|
d3~r′ψ(~r, t) = i~

∂

∂t
ψ(~r, t) (1.3.3)

which is the SN equation for a single particle. The potential energy term can be thought

of as a self-interacting gravitational potential by visualizing a single particle being su-

perposed to form a mass density function ρ(~r, t) = m|ψ(~r, t)|2 where |ψ(~r, t)|2 is the

probability density of finding the particle at position ~r at a given time t.

4



CHAPTER 1. INTRODUCTION

We can also substitute (1.2.6) into (1.3.1):

− ~2

2m
∇2ψ(~r, t) +

[
−Gm2

∫
|ψ(~r′, t)|2

|~r − ~r′|
d3~r′ +

Λmc2

4π

∫
1

|~r − ~r′|
d3~r′

]
ψ(~r, t) = i~

∂

∂t
ψ(~r, t)

(1.3.4)

which gives us the SNΛ equation.

Both SN and SNΛ are highly nonlinear variations of the Schrödinger equation and thus,

it is extremely difficult to come up with an analytical solution. Therefore, the best way

to tackle this problem is by solving the equation numerically. We will explain more

about the numerical method in the next chapter.

1.4 The Gaussian Function and Its Evolution under Canon-

ical Schrödinger Equation

In general, the wave function of a free particle can be expressed in the form of a linear

combination (summation) of momentum eigenfunctions (plane waves). We consider the

superposition of infinitely many momentum eigenfunctions giving the Gaussian function.

Physically, this means that the position of a free particle is the most localized as it could

possibly be. It is not possible to have a wave function that describes a more localized free

particle than the Gaussian wave function because the total uncertainty would violate

the Heisenberg uncertainty principle.

It is also worth noting while momentum eigenfunctions are not normalizable (they are,

however, normalized to Dirac delta function), Gaussian wave packets are normalizable

to unity. This implies that for any time evolution of a Gaussian wave function, the norm

of the wave function must be preserved. This is important as we want the time evolution

from the numerics to preserve the norm of the wave function as well.

We will solve analytically the Schrödinger equation given the following initial wave func-

tion:

ψ(r, t = 0) =
(α
π

)3/4
e−αr

2/2 (1.4.1)

which is a spherically symmetric Gaussian function. The relationship between the width

σ of the Gaussian function and the parameter α is given by σ = α−1/2. The general idea

5



CHAPTER 1. INTRODUCTION

is to first express our initial wave function (1.4.1) in terms of momentum eigenfunctions

of free particle. Since we know how the eigenfunctions evolve in time, it is possible to

find out how our initial wave function evolves in time.

Applying this method gives us the evolution of the initial wave function (1.4.1) which

can be expressed as follows (the details of the derivation can be found in Appendix B):

ψ(r, t) = (πα)−3/4

(
αm

m+ iα~t

) 3
2

exp

(
− αm

2(m+ iα~t)
r2

)
(1.4.2)

As one would expect, the evolution retains the spherical symmetry property of the wave

function. Moreover, one can check that (1.4.2) reduces to (1.4.1) when t = 0.

Hence, the radial probability density is given by:

ρ(r, t) = r2|ψ(r, t)|2 = r2 (πα)−
3
2

(
α2m2

m2 + α2~2t2

) 3
2

exp

(
− αm2

m2 + α2~2t2
r2

)
(1.4.3)

The position where the particle is most likely to be found (i.e. the peak position of the

radial probability density) is given by the point at which the first derivative of the radial

probability density with respect to the radial position vanishes and reads:

rp = α−1/2

(
1 +

α2~2

m2
t2
) 1

2

(1.4.4)

Equation (1.4.4) tells us that the peak radial probability density moves outward (away

from the origin) over time. Furthermore, the peak is accelerating. The outward acceler-

ation of the peak probability density can be found by taking the second derivative of rp

with respect to time:

r̈p =
d2

dt2

[
α−1/2

(
1 +

α2~2

m2
t2
) 1

2

]
=

~2

m2r3
p

(1.4.5)

Figure 1.1 and 1.2 show the time evolution of the radial probability density for two dif-

ferent masses. Based on the figures, one can conclude that the wave function spreads

slower for more massive particles. This behaviour is consistent with (1.4.4) which implies

that rp is always greater for particles of smaller masses at any given time t compared to

particles of greater masses.

6



CHAPTER 1. INTRODUCTION

Figure 1.1: Evolution of the probability density of a free particle of mass 5× 10−20 kg.

Figure 1.2: Evolution of the probability density of a free particle of mass 5× 10−16 kg.

7



CHAPTER 1. INTRODUCTION

Solving the time evolution of our initial wave function (1.4.1) analytically is extremely

important and useful since it can be used as a reference to check whether the numerics

computes the time evolution accurately, at least in the case of a free particle. We can

also check if the numerics for SN and SNΛ equations reduce to the free particle solution

by setting the parameters of the potential so that it vanishes.

8



Chapter 2

Numerical Method

In this chapter, we will discuss the discretization of the SN and SNΛ equation and the

numerical method used to solve them. Our method follows closely the approach used

by Salzman [12]. We will also consider the problems that arose in the numerics and the

conditions to obtain reliable numerical results.

2.1 Formulation of the Numerical Problem

Recall our initial wave function (1.4.1) from the previous chapter:

ψ(r, 0) =
(α
π

)3/4
e−αr

2/2 (2.1.1)

which only depends on the radial distance (spherically symmetric). Thus, one would

expect all the evolutions of (2.1.1) to retain the spherical symmetry. Taking a spher-

ically symmetric wave function as our initial condition greatly simplifies our problem

since it allows us to treat a three-dimensional problem as a one-dimensional problem

(Our problem now will only depend on the radial coordinate).

From now on, we will only consider cases with spherical symmetry. In the case of a

spherically symmetric wave function, the SN equation (1.3.3) can be rewritten as follows:

− ~2

2m

1

r2

∂

∂r

(
r2∂ψ(r, t)

∂r

)
− Gm2ψ(r, t)

∫
|ψ(~r′, t)|2

|~r − ~r′|
d3~r′ = i~

∂

∂t
ψ(r, t) (2.1.2)

We can further simplify (2.1.2) by expanding the inverse distance inside the integral in

terms of spherical harmonics (the details on expanding the denominator in the potential

9



CHAPTER 2. NUMERICAL METHOD

can be found in Appendix C), which gives us:

− ~2

2m

1

r2

∂

∂r

(
r2∂ψ

∂r

)
− 4πGm2ψ(r, t)

(
1

r

∫ r

0
|ψ(r′, t)|2r′2dr′

+

∫ ∞
r
|ψ(r′, t)|2r′dr′

)
= i~

∂ψ

∂t
(2.1.3)

By the similar method, the SNΛ equation can also be rewritten as follows:

− ~2

2m

1

r2

∂

∂r

(
r2∂ψ

∂r

)
− 4πGm2ψ(r, t)

(
1

r

∫ r

0
|ψ(r′, t)|2r′2dr′

+

∫ ∞
r
|ψ(r′, t)|2r′dr′

)
+ Λmc2ψ(r, t)

(
1

r

∫ r

0
r′2dr′ +

∫ ∞
r

r′dr′
)

= i~
∂ψ

∂t
(2.1.4)

Thus, we will solve (2.1.3) and (2.1.4) numerically given the initial wave function (2.1.1).

2.2 Coordinate Singularity: Laplacian at the Spherical Po-

lar Origin

Equation (2.1.3) and (2.1.4) contain a problematic term for our numerics, namely the

Laplacian of the wave function at the origin. In spherical polar coordinates, the Laplacian

of the spherically symmetric wave function is given by:

∇2
rψ =

1

r2

∂

∂r

(
r2∂ψ

∂r

)
=
∂2ψ

∂r2
+

2

r

∂ψ

∂r
. (2.2.1)

which is not well-defined at r = 0. We will use one of the arguments provided by Salzman

[12] to tackle this problem. The idea is to Taylor expand the first derivative about r = 0

in (2.2.1) and take its limit as r approaches zero. Mathematically, we can write

lim
r→0

2

r

∂ψ

∂r
= lim

r→0

2

r

(
∂ψ

∂r

∣∣∣∣
r=0

+ r
∂2ψ

∂r2

∣∣∣∣
r=0

+
r2

2

∂3ψ

∂r3

∣∣∣∣
r=0

+ · · ·
)

(2.2.2)

Notice that in the case of spherical symmetry, the Hamiltonian for the SN and SNΛ

equation commute with the parity operator. Thus, time evolutions must conserve parity.

Our initial wave function (the Gaussian function) is an even function. Since parity is

conserved, its time evolution must be an even function as well, i.e., ψ(r, t) = ψ(−r, t).

10



CHAPTER 2. NUMERICAL METHOD

We know that the first derivative of an even function is an odd function. Thus,

lim
r→0

∂ψ(r, t)

∂r
= 0 (2.2.3)

With this in mind, equation (2.2.2) becomes:

lim
r→0

2

r

∂ψ

∂r
= 2

∂2ψ

∂r2
(2.2.4)

and finally we have:

∇2
rψ =

1

r2

∂

∂r

(
r2∂ψ

∂r

)
= 3

∂2ψ

∂r2
for r = 0. (2.2.5)

In view of (2.2.3), we can also use L’Hôpital’s rule to solve:

lim
r→0

2

r

∂ψ

∂r
= 2 lim

r→0

∂ψ
∂r

r
= 2

∂2ψ

∂r2
(2.2.6)

which is in complete agreement with (2.2.4).

2.3 Discretization of the Time-Dependent Schrödinger Equa-

tion

To solve the Schrödinger equation numerically, we must first discretize the domain of

our problem: space and time. In this way, the solution to the Schrödinger equation

can be written in the form of a two-dimensional matrix with each matrix element ψnj
representing the solution at a distance of j∆r from the origin and at a time of n∆t, i.e.,

ψnj = ψ(j∆r, n∆t).

2.3.1 Problems with Explicit and Implicit Form of Discretization

The general solution to the time-dependent Schrödinger equation is given by:

ψ(r, t+ ∆t) = e−iĤ∆t/~ψ(r, t) (2.3.1)

In a discretized form, (2.3.1) becomes:

ψn+1
j = e−iĤ∆t/~ψnj (2.3.2)

11
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We will now perform Taylor series expansion on the exponential function keeping up to

first order term in ∆t:

ψn+1
j ≈

(
1̂− iĤ∆t

~

)
ψnj (2.3.3)

This form of discretization is known as the explicit Forward Time Centered Space

(FTCS) discretization. However, this strategy turns out to be unconditionally unstable

based on Von Neumann’s analysis [14, see pg. 836 and 837]. This means that any small

errors will incrementally get worse for each timestep which can eventually disrupt the

whole numerical results. Moreover, equation (2.3.3) is not unitary and thus, it does not

preserve the norm of the wavefunction.

Another method is to translate the wave function backward in time, i.e.,

e+iĤ∆t/~ψ(r, t+ ∆t) = ψ(r, t) (2.3.4)

Performing Taylor series expansion and writing (2.3.4) in a discretized form, we have:

ψn+1
j ≈

(
1̂+

iĤ∆t

~

)−1

ψnj (2.3.5)

which is also known as the implicit form. Once again, equation (2.3.5) does not preserve

the norm of the wave function although this method is likely to be stable based on Von

Neumann’s analysis [14, see pg. 849 and 852].

2.3.2 Cayley’s Form

The general idea of Cayley’s form [14, see pg. 853] is to translate the wave function at

timestep n + 1 backward in time by ∆t/2 and translate the wave function at timestep

n forward in time by ∆t/2 as well. Since the time evolution is a continuous process,

we require both translated wave functions to be equal at the middle of the timestep.

Mathematically, we can write:

e+iĤ∆t/2~ψ(r, t+ ∆t) = e−iĤ∆t/2~ψ(r, t) (2.3.6)

12
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Performing Taylor series expansion and writing (2.3.6) in the discretized form, we have:

ψn+1
j ≈

(
1̂+

iĤ∆t

2~

)−1(
1̂− iĤ∆t

2~

)
ψnj =

[
2

(
1̂+

i∆t

2~
Ĥ

)−1

− 1̂

]
ψnj (2.3.7)

which is unitary and thus, preserves the norm of the wave function. Let us denote:

Q̂−1 = 2

(
1̂+

i∆t

2~
Ĥ

)−1

and Q̂ =
1

2

(
1̂+

i∆t

2~
Ĥ

)
(2.3.8)

Thus, (2.3.7) becomes:

ψn+1 = Q̂−1ψn − ψn = χn − ψn (2.3.9)

The next step is to solve for χn given ψn. To do this, we need the explicit expression

for Q̂.

2.3.3 The Difference Equations

We will now find the expression for Q̂ by substituting the Hamiltonian into (2.3.8):

Q̂ =
1

2

[
1̂+

i∆t

2~

(
− ~2

2m
∇2 + V̂

)]
(2.3.10)

Recall that the Laplacian at the origin must be treated differently according to (2.2.5).

Thus, (2.3.10) can be rewritten as follows:

Q̂ =



1

2

[
1̂+

i∆t

2~
V n
j −

3i~∆t

4m

∂2

∂r2

]
for r = 0

1

2

[
1̂+

i∆t

2~
V n
j −

i~∆t

4m

1

r2

∂

∂r

(
r2 ∂

∂r

)]
for r 6= 0

(2.3.11)

In solving the linear equations Q̂χnj = ψnj , we need to act the operator Q̂ on χnj . It is

already obvious that Q̂χnj has to be treated differently at the spatial origin. Besides,

we also require the wave function to vanish at the spatial endpoint (numerical infinity).

Therefore, we have to consider 3 different cases:

13
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1. Case 1: For j 6= 0, N − 1

Q̂χnj =
1

2

[
1̂+

i∆t

2~
V n
j

]
χnj −

i~∆t

4m

[
1

2

∂2χnj
∂r2

+
1

r

∂χnj
∂r

]

≈ 1

2

[
1̂+

i∆t

2~
V n
j

]
χnj −

i~∆t

4m

[
1

2

(
χnj+1 − 2χnj + χnj−1

(∆r)2

)
+

1

j∆r

(
χnj+1 − χnj−1

2∆r

)]
= − i~∆t

8m(∆r)2

(
j − 1

j

)
χnj−1 +

1

2

[
1 +

i∆t

2~
V n
j +

i~∆t

4m(∆r)2

]
χnj −

i~∆t

8m(∆r)2

(
j + 1

j

)
χnj+1

Let us denote:

K =
i~
8m

R =
∆t

(∆r)2
P =

i∆t

2~
(2.3.12)

Thus, we have:

Q̂χnj = −KR
(
j − 1

j

)
χnj−1 +

1

2

[
1 + PV n

j + 2KR
]
χnj −KR

(
j + 1

j

)
χnj+1 (2.3.13)

2. Case 2: For j = N − 1

In this case, ψnN = 0 which implies that χnN = 0 as well. Therefore, from (2.3.13), we

have:

Q̂χnN−1 = −KR
(
N − 2

N − 1

)
χnN−2 +

1

2

[
1 + PV n

N−1 + 2KR
]
χnN−1 (2.3.14)

3. Case 3: For j = 0

Q̂χnj ≈
1

2

[
1̂+

i∆t

2~
V n
j

]
χnj −

3i~∆t

4m

(
χnj+1 − 2χnj + χnj−1

(∆r)2

)
= − 3i~∆t

8m(∆r)2
χnj−1 +

1

2

[
1 +

i∆t

2~
V n
j +

3i~∆t

2m(∆r)2

]
χnj −

3i~∆t

8m(∆r)2
χnj+1

Applying the constants defined by (2.3.13) and taking into account the fact that χn−1 =

χn1 due to spherical symmetry, we have:

Q̂χn0 =
1

2
[1 + PV n

0 + 12KR]χn0 − 6KRχn1 (2.3.15)

14
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The linear equations Q̂χnj = ψnj can be written in the following matrix form:



b0 c0

a1 b1 c1

a2 b2 c2

. . .

aN−2 bN−2 cN−2

aN−1 bN−1





χ0

χ1

χ2

...

χN−2

χN−1


=



ψ0

ψ1

ψ2

...

ψN−2

ψN−1


(2.3.16)

Here, Q̂ is represented by the tridiagonal matrix. The matrix elements: ai denotes the

superdiagonal elements, bi denotes the diagonal elements, and ci denotes the subdiagonal

elements. The next step is to solve (2.3.16) using Thomas Algorithm.

2.3.4 Solving the Tridiagonal Systems of Linear Equations: Thomas

Algorithm

Performing the matrix multiplication on the LHS of (2.3.16) gives the following set of

linear equations: 

b0χ0 + c0χ1

a1χ0 + b1χ1 + c1χ2

a2χ1 + b2χ2 + c2χ3

...

aN−2χN−3 + bN−2χN−2 + cN−2χN−1

aN−1χN−2 + bN−1χN−1


=



ψ0

ψ1

ψ2

...

ψN−2

ψN−1


(2.3.17)

Our goal is to eliminate ai. We first eliminate a1 by multiplying the zeroth linear equation

with a1/b0 (recall that b0 6= 0) and subtracting it from the first equation, which gives:(
b1 −

a1

b0
c0

)
χ1 + c1χ2 = ψ1 −

a1

b0
ψ0 (2.3.18)

Let b0 = B0, ψ0 = D0, and define:

B1 = b1 −
a1

B0
c0 and D1 = ψ1 −

a1

B0
ψ0 (2.3.19)
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Thus, we can rewrite (2.3.17) as follows:

B0χ0 + c0χ1

B1χ1 + c1χ2

a2χ1 + b2χ2 + c2χ3

...

aN−2χN−3 + bN−2χN−2 + cN−2χN−1

aN−1χN−2 + bN−1χN−1


=



D0

D1

ψ2

...

ψN−2

ψN−1


(2.3.20)

We repeat the same procedure to eliminate a2. Multiplying the first linear equation with

a2/B1 and subtracting it from the second equation gives:(
b2 −

a2

B1
c1

)
χ2 + c2χ3 = ψ2 −

a2

B1
D1 (2.3.21)

Again, we define:

B2 = b2 −
a2

B1
c1 and D2 = ψ2 −

a2

B1
D1 (2.3.22)

This procedure is repeated up to the last linear equation, which gives the following set

of linear equations: 

B0χ0 + c0χ1

B1χ1 + c1χ2

B2χ2 + c2χ3

...

BN−2χN−2 + cN−2χN−1

BN−1χN−1


=



D0

D1

D2

...

DN−2

DN−1


(2.3.23)

where

Bi = bi −
ai
Bi−1

ci−1, Di = ψi −
ai
Bi−1

Di−1 for i = 1, 2, · · · , N − 1. (2.3.24)

The last linear equation in (2.3.23) allows us to solve for χN−1. With χN−1, we can

work backwards and solve for χN−2 and so on. As seen, the Thomas Algorithm is an

extremely efficient way to solve tridiagonal systems of linear equations since it allows

us to work with and store data in one-dimensional vectors instead of a two-dimensional

matrix.

16



CHAPTER 2. NUMERICAL METHOD

2.4 Discretization of the Potential for Schrödinger-Newton-

Lambda (SNΛ) Equation

The potential of the SNΛ equation in the case of spherical symmetry is given by:

Φ(r, t) = −4πGm
(

1

r

∫ r

0
|ψ(r′, t)|2r′2dr′ +

∫ ∞
r
|ψ(r′, t)|2r′dr′

)
+

Λc2

(
1

r

∫ r

0
r′2dr′ +

∫ ∞
r

r′dr′
)

(2.4.1)

and the potential of the SN equation can be obtained by substituting Λ = 0 into (2.4.1).

In a discretized form, (2.4.1) becomes:

V n
j = −4πGm

 1

j(∆r)

j−1∑
i=0

|ψni |2(i∆r)2∆r +
N−1∑
i=j

|ψni |2(i∆r)∆r

+

Λc2

 1

j(∆r)

j−1∑
i=0

(i∆r)2∆r +
N−1∑
i=j

(i∆r)∆r


V n
j = −4πGm(∆r)2

1

j

j−1∑
i=0

|ψni |2i2 +
N−1∑
i=j

|ψni |2i

+ Λc2(∆r)2

1

j

j−1∑
i=0

i2 +
N−1∑
i=j

i


(2.4.2)

2.5 Conditions for Valid Numerics

Recall that in solving the Schrödinger equation numerically, we used the Cayley’s form

of discretization which always preserves the norm of the wave function. This together

with our initial wave function, which is normalized, implies that the wave function at

any given time must vanish as the radial distance r goes to infinity, i.e., ψ(r →∞, t) = 0.

However, in deriving the difference equations, we have imposed this boundary condition

at the numerical infinity (which is not the true infinity). This is problematic since ana-

lytically, the wave function at a given time is not necessarily zero at the numerical infinity.

As illustrated in Figure 2.1, imposing this boundary condition at the numerical infinity

causes any wave function which is non-zero at the numerical infinity to experience a

“reflection” by the numerical infinity.
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Figure 2.1: Reflection of the wave function (m = 5× 10−16 kg) for different times.

As far as one can see, this “reflection” causes the numerical results to be invalid. A

possible way to obtain accurate solutions from the numerics is to set a time range in
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which the effects due to reflection are negligible. The disadvantage of this approach is

that the dynamics beyond the time range can not be observed.

After fixing a time range such that the effects due to reflection is negligible, one must

also take into consideration the number of discrete points in space and time used in the

numerics. In order to obtain valid numerical results, the number of time steps has to be

much larger compared to the number of position “steps”. However, we do not want the

number of spatial points to be too low in order to obtain a smooth curve.
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Numerical Review Using

Schrödinger Equation

In this chapter, we will solve the canonical Schrödinger equation with different potentials

(zero and step potential) numerically and see if the results obtained coincide with our

understanding of quantum mechanics. This mainly serves as a method to check if the

numerics is valid, at least in the case of the canonical Schrödinger equation.

3.1 The Free Particle

As explained in section 1.4, the radial probability density of a free particle described by

a Gaussian wave function spreads over time. We will solve the evolution of our initial

wave function numerically and plot the time evolution of the radial probability density.

In the case of a free particle, the potential is set to zero at all times and at all points in

space, i.e., V n
j = 0 for all j and n.

Figure 3.1 shows the comparison between the evolution of the radial probability density

obtained numerically and analytically. As can be seen, the numerical results are in

good agreement with our analytical predictions. The height of the analytical Gaussian

peak is slightly lower compared to the numerical Gaussian peak. This is as expected

since probability is allowed to “leak out” beyond the numerical infinity in the analytical

case but not allowed in the numerical case. Since it is always possible to compare the

numerical to the analytical results in the case of a free particle, the numerics for the

free particle acts as a platform to fine-tune the parameters, such as the time range and

number of steps, as the numerics is used to solve for the SN and SNΛ equation.
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Figure 3.1: Comparison of the analytical and numerical probability density of a free
particle of mass 5× 10−20 kg (top) and 5× 10−16 kg (bottom). Numerical infinity is at
r = 7µm causing numerical curves to be slightly above the analytical ones.
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3.2 The Spherical Potential Step

In this section, a step potential (also known as the Heaviside step function) will be

used in the numerics. We will check the behaviour of the numerical results and see if

it coincides with our theoretical understanding of the potential step. It is important

to note that our initial wave function does not carry any initial momentum (〈p〉 = 0).

Thus, the kinetic energy of the wave packet is just (∆p)2/2m which is always greater

than 0. First, we consider the following potential step:

V (r, t) =

−V0 for 0 ≤ r ≤ a

+V0 for r > a
(3.2.1)

where V0 and a are positive constants. Figure 3.2 shows the time evolution of the radial

probability density in a potential step given by (3.2.1) at a finite distance of a = 5µm

from the origin.

Figure 3.2: Radial probability density of a particle of mass 5× 10−19 kg in a “step up”
potential.
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As one would expect, the wave packet is reflected by the potential barrier. Notice that

the probability density does not vanish at the boundary r = a. Instead, it connects

smoothly to the exponential decay in the region with the potential barrier.

The position of the potential step with respect to the origin a can be shifted up to the

numerical infinity as shown in Figure 3.3. In the case of a approaching the numerical

infinity (i.e., uniform potential), one would expect the wave packet to behave exactly

the same way as in the case of a free particle.

Figure 3.3: Radial probability density of a particle of mass 5 × 10−19 kg in a uniform
potential.

We can also consider the case where the potential is a “step down” function given by:

V (r, t) =

−V1 for 0 ≤ r ≤ a

−V2 for r > a
(3.2.2)

where V1 and V2 are positive constants and V2 > V1. Classically, this can be thought of

as an object moving from a region of high potential to a region of low potential. Thus,
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one would expect the object to experience an acceleration and move faster in the region

of lower potential. Figure 3.4 shows the evolution of the radial probability density in a

potential step given by (3.2.2) at a finite distance of a = 2µm from the origin.

Figure 3.4: Radial probability density of a particle of mass 5×10−19 kg in a “step down”
potential.

As can be seen from Figure 3.4, the probability is not fully transmitted into the region

of low potential. Part of the probability is reflected by the potential well and moves

towards the origin. This causes the wave function to form a superposition of two wave

packets moving in opposite direction. This behaviour of the probability density is as

predicted by the quantum scattering theory.
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Schrödinger-Newton Equation

In this chapter, we will use our programme to solve the Schrödinger-Newton equation.

We will also explain the behaviour of the Gaussian wave packet evolving under the SN

equation for different masses.

4.1 Summary of Results

We set the parameter α of our initial wave function to be 4×1012 m−2, which corresponds

to a Gaussian with an initial width of 0.5 µm. The following table shows the summary

of the behaviour of the wave function for various masses with this particular value of

α. Our numerical results are in good agreement with the results found by Giulini and

Großardt [15].

Mass Behaviour

Below 3× 10−18 kg Identical to free particle

3× 10−18 kg to 1× 10−17 kg Spread slower than the free particle

∼ 2× 10−17 kg Oscillate

3× 10−17 kg to 9× 10−17 kg Collapse towards the origin

1× 10−16 kg to 4× 10−16 kg Chaotic

Above 5× 10−16 kg Stationary

Table 4.1: Summary of the results for SN equation with α = 4× 1012 m−2.
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4.2 The Behaviour of the Wave Function

The effects observed in the evolution of the probability density include the behaviour

that one would expect physically, such as the spread and collapse of the wave function,

and the effects that arise due to numerical artifacts, such as the chaotic and stationary

behaviour of the wave function. They will now be analysed in detail.

4.2.1 Spread of the Wave Function

For a particle of mass in the order of 10−18 kg, its wave function evolving under the SN

equation spreads slower compared to a free particle of the same mass. This is exactly

what one would expect since the SN potential includes the attractive gravitational po-

tential. Figure 4.1 shows the evolution of the probability density of a particle of mass

8× 10−18 kg under the SN equation.

Figure 4.1: Radial probability density of a particle of mass 8× 10−18 kg evolving under
the SN equation.

We can also compare the position of the peak probability density of a particle of mass,

say, 8× 10−18 kg, evolving under the SN potential and the position of the peak proba-

bility density of the same particle evolving freely (i.e., zero potential) at different times.
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Figure 4.2 shows that indeed the spread of the probability density is slower in SN model

compared to the free particle.

Figure 4.2: Comparison of the position of the peak probability density of a particle of
mass 8× 10−18 kg in the case of SN and free particle.

4.2.2 Oscillation of the Wave Function

The “oscillation” of the wave function can be roughly thought of as the situation where

the position of the peak probability density moves around a specific distance. It is possi-

ble to make an estimation of the “critical mass”, which is the mass where the contribution

from the quantum wave packet dispersion is exactly the same as the contribution from

the gravitational interaction. We follow the idea proposed by Carlip [16] in estimating

the critical mass, that is, solving for the mass where the outward acceleration due to

dispersion at the peak probability density is perfectly balanced by the inward accelera-

tion due to gravitational interaction at time t = 0. The outward acceleration is given by

(1.4.5) and the inward gravitational acceleration ag ∼ Gm/r2
p. Thus, the accelerations

will balance out at time t = 0 when the critical mass mc is given by:

mc ∼
(
~2√α
G

)1/3

(4.2.1)
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For α = 4× 1012 m−2, this gives mc ≈ 7× 10−18 kg. As one can see, this estimation is

not quite accurate. We can, however, improve it by applying Gauss’s law for gravity and

making use of the spherical symmetry in estimating the inward gravitational acceleration.

Namely, the strength of the gravitational field at rp is proportional to the mass within

the radial distance r < rp, which implies ag ∼ G(ζm)/r2
p where ζ is the fraction of mass

within the radial distance r < rp. Mathematically, ζ is given by:

ζ =

∫ rp

0
ρ(r, 0)dr

∫
dΩ (4.2.2)

Substituting ρ(r, 0) = r2|ψ(r, 0)|2 and rp = α−1/2 at time t = 0, we have

ζ =

∫ α−1/2

0
r2
(α
π

) 3
2
e−αr

2
dr

∫
dΩ = erf(1)− 2

e
√
π
≈ 0.43 (4.2.3)

With the correction term ζ, the critical mass mc is given by:

mc ∼
(
~2√α
Gζ

)1/3

(4.2.4)

For α = 4 × 1012 m−2, we obtain mc ≈ 9.2 × 10−18 kg, which is a better estimation,

i.e. closer to numerical findings. The discrepancy between our estimation and numerical

results is not unlikely due to nonlinearities in the problem.

For our particular value of α, the oscillation of the wave function is observed for parti-

cles of mass approximately 2× 10−17 kg. We know that the outward acceleration of the

wave function aout ∼ ~2r−3
p /m2 and the inward acceleration ag ∼ Gmr−2

p . Hence, for

sufficiently small rp, the outward acceleration dominates the inward acceleration and for

sufficiently large rp, the inward acceleration dominates the outward acceleration. This

implies that there is a point in space where the two accelerations are equal, i.e., the

equilibrium position req. Suppose we have a wave function for which the peak proba-

bility density rp moves initially towards the origin, i.e., rp decreases over time. As rp

decreases over time, the outward acceleration grows faster than the inward acceleration.

When the outward acceleration wins, the wave function starts to spread and rp increases

over time. As rp increases over time, the outward acceleration decays faster than the

inward acceleration and the wave function will start to move in again when the inward

acceleration wins. This whole process repeats itself thus creating an “oscillating” wave

function as shown in Figure 4.3.
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Figure 4.3: Radial probability density and position of the peak probability density of a
particle of mass 2× 10−17 kg evolving under the SN equation.
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Having known the outward and inward acceleration up to a proportionality constant, we

can solve for the “equilibrium” position req, which is given by:

req ∼
~2

Gm3
(4.2.5)

Equation (4.2.5) implies that if the mass of the particle m is large, req is very close

to the origin and thus, gravitational acceleration dominates nearly everywhere in space

causing the wave function to gravitationally collapse. On the other hand, if the mass of

the particle m is extremely small, req is extremely far away from the origin and thus, the

outward acceleration dominates nearly everywhere in space causing the wave function

to spread.

4.2.3 Gravitational Collapse of the Wave Function

Figure 4.4 shows an example of the wave function “collapse” for a particle of mass

5×10−17 kg and α = 4×1012 m−2. By gravitational collapse we mean that the position

of the peak probability density moves towards the origin.

Figure 4.4: Radial probability density of a particle of mass 5× 10−17 kg evolving under
the SN equation.
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Figure 4.5: Position of the peak probability density of a particle of mass 5 × 10−17 kg
evolving under the SN equation. Note different time scale on both plots. The top plot
confirms that the peak probability density does not “oscillate”.
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In plotting the peak probability density as shown in Figure 4.5, one has to take note that

the collapse of the wave function occurs quite rapidly compared to the other behaviour

of the wave function. Figure 4.5 confirms rather nicely that the wave function collapses

to some particular point near the origin.

4.2.4 Chaotic Behaviour

As the mass of the particle is increased beyond the collapse regime while fixing the

parameter α, the wave function seemed to have a chaotic evolution as shown in Figure

4.6. In this regime, it is not possible to describe the behaviour of the wave function

in simple terms. We currently do not know any physics relevant to this behaviour.

Nonetheless, it is also possible that this behaviour of the wave function is a form of

numerical artifact.

Figure 4.6: Radial probability density of a particle of mass 2× 10−16 kg evolving under
the SN equation.

4.2.5 Stationary Wave Function

The stationary behaviour of the wave function is observed for large masses (beyond the

chaotic regime). The stationary behaviour means that the wave function does not evolve
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over time at all, i.e., it remains identical to the initial wave function for any reasonable

time range. As shown in Figure 4.7, the position of the peak probability density remains

exactly at initial width of the wave function. Similar to the chaotic behaviour of the

wave function, it is likely that this behaviour is a numerical artifact.

Figure 4.7: Position of the peak of probability density of a particle of mass 2× 10−16 kg
evolving under the SN equation.

4.3 The Schrödinger-Newton Potential

To give us a better understanding on the evolution of the wave function, it is useful to

understand the overall shape of the SN potential and how it evolves over time. The

relationship between the potential and the evolution of the wave function is highly non-

linear, in the sense that the potential at time t depends on the wave function at time

t but the wave function at time t itself depends on the potential at time t. However,

in the case of the discretized SN equation, the wave function at a given timestep n+ 1

depends on the potential at timestep n, which in turn depends on the wave function at

timestep n. Thus, using our knowledge of the behaviour of the wave packet in different

types of potential steps (as discussed in Chapter 3), we can “visualize” the overall shape

of the wave function at timestep n+1 given the potential and wave function at timestep n.
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We will first consider the case of relatively small masses where the wave function spreads

over time. Figure 4.8 shows the SN potential of a particle of mass 8 × 10−18 kg and

α = 4× 1012 m−2 at different times.

Figure 4.8: The SN potential of a particle of mass 8× 10−18 kg at different times.

As shown in Figure 4.8, the SN potential has the form of a potential well. The depth

of the potential well decreases over time causing the overall wave packet to spread. Due

to the existence of this potential well in the SN model, the spread of the wave packet is

slower compared to that of a free particle.

Figure 4.9 shows the SN potential of a particle of mass 2 × 10−17 kg which lies in the

“oscillating” regime. The initial depth of the potential well grows deeper as the mass is

increased which is as expected since the SN potential is directly proportional to the mass

of the particle. Unlike the previous case where the depth of the potential well grows

shallower over time, for a particle of mass ∼ 2×10−17 kg, the depth of the potential well

grows deeper over time and “oscillates” between a particular range of depths (as shown

in Figure 4.9), in the sense that the depth of the well has the tendency to grow deeper

or shallower at different points of time. This is not surprising recalling the fact that the
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behaviour of the wave function evolution for this particular mass “oscillates” as well.

Figure 4.9: The SN potential and the depth of the potential well of a particle of mass
2× 10−17 kg at different times.
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Lastly, we consider the SN potential in the collapse regime as shown in Figure 4.10. The

depth of the potential well grows deeper while the width of the well decreases over time.

At sufficiently large time, the SN potential evolves into an extremely deep and narrow

well. Thus, the wave packet evolving under this potential can be roughly thought of as

being “trapped” in the deep and narrow well.

Figure 4.10: The SN potential of a particle of mass 5× 10−17 kg at different times.
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Chapter 5

Schrödinger-Newton-Lambda

Equation

In this chapter, we will do a rough estimation of the parameters in our code so that the

effects induced by the cosmological constant Λ are noticable and then use our programme

to solve the Schrödinger-Newton-Lambda equation. Similar to the previous chapter, we

will discuss the behaviour of the Gaussian wave packet evolving under the SNΛ equation.

5.1 Estimation of the Initial Gaussian Width

Since the cosmological constant Λ is extremely small (of the order of 10−52 m−2), the

effects induced by the cosmological constant are extremely hard to observe in our numer-

ical results for any arbitrary choice of the initial Gaussian width. However, it is possible

to make an estimate on the initial Gaussian width σ and the mass of the particle m

such that the effects induced by the cosmological constant Λ are comparable to those of

quantum mechanical dispersion and canonical gravitational interaction.

Given a spherically symmetric initial Gaussian wave function, the “total acceleration”

atotal experienced by the peak of the probability density is approximately:

atotal ∼
~2

m2σ3
− Gm

σ2
+

Λc2σ

3
∼
λ2
Cc

2

σ3
−

l2P c
2

λCσ2
+
σc2

l2dS
(5.1.1)

where λC is the Compton wavelength of the particle, lP =
√

~G/c2 is the Planck length,

and ldS =
√

3/Λ is the de Sitter radius, which is of the order of 1026 m (comparable to

the present day radius of the universe). We thus plot the curves of mass as a function of
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width m(σ) for two different cases: the quantum mechanical acceleration is of the same

order as the dark energy acceleration and the gravitational acceleration is of the same

order as the dark energy acceleration.

Figure 5.1: Relationship between the mass and width of the initial Gaussian so that
the “acceleration” terms are of the same order. Acceleration due to quantum dispersion
dominates acceleration due to dark energy below the aSE = aΛ curve. The gravitational
acceleration dominates acceleration due to dark energy above the aSN = aΛ curve.

Figure 5.1 shows that the effects induced by the cosmological constant are dominating

for a certain range of mass if the initial width of the Gaussian function is greater than

∼ 67 m. Thus, for a Gaussian wave function with an initial width σ > σeq, one would

expect the wave function to evolve identically to that of a free particle for relatively small

masses since the “acceleration” induced by the dispersion of the wave packet dominates

at this region. As the mass is increased, the “acceleration” induced by dark energy

begins to dominate and we would expect to see its effects in this regime. For relatively

large mass, one would expect the evolution of the wave function to reduce to the case of

Schrödinger-Newton.

5.2 Summary of Results

We set the parameter α of our initial Gaussian wave function to be 1.78 × 10−4 m−2,

which corresponds to a Gaussian with an initial width of 75 m. Table 5.1 shows the
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summary of the behaviour of the wave function evolving under the SNΛ equation for

this particular choice of σ.

Mass Behaviour

Below 1× 10−21 kg Identical to free particle

2× 10−21 kg to 3× 10−20 kg Spread faster than the free particle

4× 10−20 kg to 5× 10−20 kg Part of the wave function spreads slower
while the other part spreads faster

6× 10−20 kg to 1× 10−19 kg Part of the wave function collapses and
“oscillates” while the other part spreads

∼ 2× 10−19 kg Chaotic

Above 3× 10−19 kg Stationary

Table 5.1: Summary of the results for SNΛ equation with α = 1.78× 10−4 m−2.

For the purpose of comparison, Table 5.2 shows the summary of the behaviour of the

wave function evolving under SN equation for α = 1.78× 10−4 m−2.

Mass Behaviour

Below 4× 10−21 kg Identical to free particle

5× 10−21 kg to 2× 10−20 kg Spread slower than the free particle

3× 10−20 kg to 5× 10−20 kg “Oscillates”

6× 10−20 kg to 1× 10−19 kg Collapse

2× 10−19 kg to 2× 10−18 Chaotic

Above 2× 10−18 kg Stationary

Table 5.2: Summary of the results for SN equation with α = 1.78× 10−4 m−2.

From Table 5.1 and 5.2, one can tell that the numerical results might no longer be valid

due to numerical artifacts when the mass of the particle is greater than 2 × 10−19 kg.

Some interesting dynamics, such as the “partial spread” and “partial collapse” of the

wave function, are observed in the case of the SNΛ potential. Especially that they are

not present in the case of the SN potential.
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5.3 The Behaviour of the Wave Function

We will only discuss the “unique” effects observed in the evolution of the wave function

under the SNΛ equation (i.e. behaviour which is not present in the case of Schrödinger-

Newton).

5.3.1 Spread of the Wave Function

For our particular choice of α, the wave function of a particle with a mass in the range of

2× 10−21 kg to 3× 10−20 kg evolving under the SNΛ equation spreads faster compared

to a free particle of the same mass. This behaviour is as what one would expect to keep

in mind the fact that the dark energy term in the potential acts as an anti-gravity, i.e.

repulsively. In this range of mass, the effects induced by dark energy are stronger than

the effects induced by gravitational interaction.

Figure 5.2: Radial probability density of a particle of mass 1× 10−20 kg evolving under
the SNΛ potential. Note macroscopic spatial dimensions and extremely long evolution
times.

Figure 5.3 shows that the spread of the wave function for this particular mass is indeed

faster than the case of a free particle of the same mass.
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Figure 5.3: The position of the peak probability density of a particle of mass 1× 10−20

kg evolving under the SNΛ potential increases faster than in the case of a free particle
of the same mass.

5.3.2 “Partial Spread” of the Wave Function

As the mass of the particle is increased, the effects induced by gravitational interaction

start to play a significant role in the evolution of the wave function. The gravitational

potential is proportional to the inverse of the radial distance whereas the potential in-

duced by dark energy is proportional to the square of the radial distance. Thus, the

effects induced by gravitational interaction are dominant for relatively small radial dis-

tance and the effects induced by dark energy are dominant for relatively large radial

distance. If this is indeed the case, given a Gaussian wave packet with sufficiently large

initial width, one could expect part of the wave packet with relatively small radial dis-

tance to collapse and part of the wave packet with relatively large radial distance to

spread. More generally, it is possible for the initial wave packet to decay into two wave

packets with different behaviour. Part of the wave packet with relatively small radial

distance tends to exhibit the effects observed in the SN model, such as the “oscillations”

or slower spread, whereas the other part of wave function with relatively large radial

distance, tends to spread faster than in the case of the free particle.
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Figure 5.4 shows an example of the wave packet of a particle of mass 5×1020 kg decaying

into two wave packets that spread with different rates. Part of the wave packet with

a smaller radial distance spreads slower compared to the part of the wave packet with

larger radial distance.

Figure 5.4: Radial probability density of a particle of mass 5× 10−20 kg evolving under
the SNΛ potential.

5.3.3 “Partial Collapse” of the Wave Function

The “partial collapse” of the wave function describes the behaviour of the wave packet

where part of the wave packet with relatively small radial distance collapses and “os-

cillates” as explained previously in the SN model whereas the other part of the wave

packet with relatively large radial distance spreads away. For particles of mass between

6× 10−20 kg and 8× 10−20 kg, the effects induced by gravitational interaction are suffi-

ciently large such that part of the wave packet with relatively small radial distance does

not spread over time. Figure 5.5 shows an example of this behaviour exhibited by a

particle of mass 6× 10−20 kg.
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Figure 5.5: Radial probability density and position of the peak probability density of a
particle of mass 6× 10−20 kg evolving under the SNΛ potential.

For comparison, Figure 5.6 shows the behaviour of the same particle evolving under SN
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potential. In the case of SN potential, the initial wave packet does not decay into two

wave packets.

Figure 5.6: Radial probability density of a particle of mass 6× 10−20 kg evolving under
the SN potential.

As the mass of the particle is further increased, the fraction of the wave function that

previously spreads decreases gradually and the collapse of the wave function occurs more

rapidly. The frequency of the “oscillations” of the wave function increases while the am-

plitude of the “oscillations” decreases as the mass of the particle is increased. This can

be seen by comparing Figure 5.7 to Figure 5.5.

We would expect for sufficiently large mass, the fraction of the wave function that spreads

away would vanish so that the gravitational collapse of the entire wave function could

be observed as in the case of the SN model. In other words, for our particular choice

of α, the evolution of the wave function under the SNΛ equation must reduce to the

evolution under the SN equation for sufficiently large mass. However, we were not able

to reach this regime with the present numerical procedures.
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Figure 5.7: Position of the peak probability density of a particle of mass 9 × 10−20 kg
evolving under the SNΛ potential.

5.4 The Schrödinger-Newton-Lambda Potential

Similar to the previous chapter, we will try to better understand the behaviour of the

wave function evolution under the SNΛ model by looking at the SNΛ potential.

We first consider the case in which the wave packet spreads, i.e., the wave function of

particles of mass between 5 × 10−21 kg and 2 × 10−20 kg. As shown in Figure 5.8, the

potential corresponding to this particular range of mass does not change significantly

over time since the potential is dominated by the contribution from dark energy (recall

that only the “SN term” in the potential is time dependent). Based on the shape of

the potential, one can deduce that the SNΛ potential corresponding to this particular

range of mass is a repulsive potential, explaining the faster spread of the wave packet

compared to the case of the free particle. Figure 5.9 shows that the effects induced by

dark energy are more prominent for relatively larger mass. This implies that the spread

of a wave packet corresponding to a relatively large mass is faster than the spread of the

same wave packet corresponding to a relatively small mass. The effect opposite to the

canonical quantum theory.
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Figure 5.8: The SNΛ potential of a particle of mass 1× 10−20 kg at different times.

Figure 5.9: The SNΛ potential of particles of different masses at time t = 0.
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Figure 5.10 shows the evolution of the SNΛ potential of a particle of mass 5× 10−20 kg.

The potential corresponding to this particular mass evolves to form a shallow well at the

region with relatively small radial distance. This potential well is not sufficiently deep

to collapse part of the wave function. However, the part of the wave function which is

affected by this potential well experience a slower spread compared to the rest of the

wave function (as shown in Figure 5.4).

Figure 5.10: The SNΛ potential of a particle of mass 5× 10−20 kg at different times.

Let us now increase further the mass of the particle to 6×10−20 kg (the evolution of the

probability density corresponding to this particular mass is shown in Figure 5.5). The

potential corresponding to this particular mass evolves to form a potential well as shown

in Figure 5.11. In this case, the potential well is sufficiently deep to collapse part of the

wave function. In order to have an entire wave function collapse, the initial width of

the potential well must be greater than the width of the wave function. This condition

can only be achieved if the mass is increased further. However, as we have mentioned

earlier, numerical artifacts start to be significant before a sufficiently large mass can be

used to observe the entire collapse of the wave function.
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Figure 5.11: The SNΛ potential of a particle of mass 6× 10−20 kg at different times.

5.5 The Concept of the Turn-Around Radius

In a dark energy universe as described by the ΛCDM model, there is a maximum radius

of a spherical mass distribution above which the mass no longer collapses but disperses

due to the expansion of the universe. The radius which marks the boundary between the

attractive and repulsive behaviour is known as the turn-around radius [17]. Thus, if the

SNΛ model predicts a turn-around radius smaller than the initial Gaussian width for a

certain mass, we would expect the wave packet to be unstable in the framework of the

SNΛ model (i.e., the entire wave packet will not collapse). Classically, the turn-around

radius in the case of a Schwarzschild-de Sitter spacetime 1 is given by

RTA =

(
3GM
Λc2

)1/3

(5.5.1)

For a mass of 6× 10−20 kg, the turn-around radius is approximately 102 m. Eq. (5.5.1)

does not take into account the contribution from quantum mechanical dispersion. Thus,

1The Schwarzschild-de Sitter spacetime is a spherically symmetric solution to Einstein’s field equations
with a positive cosmological constant.
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we would expect the turn-around radius predicted by the SNΛ model to be smaller than

the classical turn-around radius. It would be interesting if one could measure the actual

turn-around radius from experiments and compare it to our numerical results.

5.6 Conclusions and Future Work

In this thesis, we have investigated the solutions to the existing Schrödinger-Newton

equation numerically. We have also extended the numerical method based on the works

in [12] to investigate the solutions to the Schrödinger-Newton-Lambda equation, a mod-

ified Schrödinger-Newton equation which includes the effects induced by dark energy in

the form of a positive cosmological constant.

We recovered the behaviour of a wave packet evolving under the Schrödinger-Newton

model, such as the (slower) spread and the gravitational collapse of the wave packet.

For the case of the Schrödinger-Newton-Lambda model, we were able to observe inter-

esting new behaviour, such as the (faster) spread, the “partial spread” and the “partial

collapse” of the wave packet. These results are not surprising recalling the nature of

dark energy, which behaves as an anti-gravity. In addition, the relevant mass and length

scales which one can use to test the effects induced by dark energy were obtained as

well. It turned out that one has to superpose a particle of mass of the order of 10−20 kg

over the distance above 50 m, which is extremely challenging in practice. Furthermore,

the evolution of the wave function under the Schrödinger-Newton-Lambda model is ex-

tremely long (of the order of 1017 s). Therefore, it is extremely challenging for one to

come up with an experiment to test the effects induced by the cosmological constant in

this collapse model approach.

There is still plenty of work to be done regarding the Schrödinger-Newton-Lambda equa-

tion. For instance, it would be interesting to consider the case of two or more particles

in the Schrödinger-Newton-Lambda model and investigate the interaction between them

and compare the behaviour to that of macroscopic objects in a dark energy universe.
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Appendix A

Newtonian Limit of Einstein’s

Field Equations

Here, we derive in detail the Poisson’s equation (1.2.5) from the semiclassical approach

by Møller and Rosenfeld and solve the Poisson’s equation using the method of Green’s

function. Similar derivations, namely the Newtonian limit of Einstein’s equations with-

out the cosmological constant, can be found in textbooks on General Relativity [11].

A.1 Derivation of Poisson’s Equation for the Potential in

the Newtonian Limit

We begin by writing our starting point (1.2.1):

Rµν −
1

2
Rgµν + Λgµν =

8πG
c4
〈ψ| T̂µν |ψ〉 (A.1.1)

where Rµν is the Ricci tensor, gµν is the metric tensor, and R is the Ricci scalar. The

approach to reduce Einstein’s field equations is to invoke the following assumptions:

1. We assume that the gravitational field is static. This implies that any time deriva-

tive component will vanish.

2. We invoke that spacetime is nearly flat with some small perturbations. Mathe-

matically, we can write

gµν = ηµν + hµν (A.1.2)
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where ηµν is the Minkowski metric, with signature (−,+,+,+) and |hµν | � 1 can

be treated as small perturbations. We will ignore second order and higher terms

in hµν .

3. We assume that the field due to pressure is negligible compared to the field due to

mass density. This implies that the component T̂00 = ρ̂c2 is dominant and we will

only consider this component.

Taking the trace of Einstein’s field equations on both sides gives us:

R− 1

2
Rgµνgµν + Λgµνgµν =

8πG
c4
〈ψ| T̂ |ψ〉 (A.1.3)

Since gµνgµν = δµµ = 4, we have

R = −8πG
c4
〈ψ| T̂ |ψ〉+ 4Λ (A.1.4)

Substituting (A.1.4) into (A.1.1) and rewriting gives:

Rµν =
8πG
c4

(
〈ψ| T̂µν |ψ〉 −

1

2
〈ψ| gµν T̂ |ψ〉

)
+ Λgµν (A.1.5)

The Ricci tensor can be obtained by contracting the Riemann tensor. In terms of

Christoffel symbols, the Ricci tensor reads

Rµν = gαβRβµαν = ∂αΓανµ − ∂νΓαµα + ΓααβΓβνµ − ΓανβΓβαµ (A.1.6)

The dominant term of the Ricci tensor in the static weak-field limit can be expressed as

R00 = ∂αΓα00 − ∂0Γα0α + ΓααβΓβ00 − Γα0βΓβα0 (A.1.7)

The second term of (A.1.7) is a time derivative which vanishes for a static field. The

third and fourth terms are second order in gµν and hence are negligible. Thus, to the

first order in gµν ,

R00 = ∂αΓα00 (A.1.8)

The Christoffel symbols read

Γµαβ =
1

2
gµν (∂βgνα + ∂αgνβ − ∂νgαβ) (A.1.9)
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Thus, Γµ00 can be calculated as follows (keeping only linear terms of the perturbation

and ignoring time derivatives):

Γµ00 =
1

2
gµν (∂0gν0 + ∂0gν0 − ∂νg00) =

1

2
(ηµν − hµν) (−∂νh00) = −1

2
ηµν∂νh00 (A.1.10)

Hence, (A.1.8) becomes

R00 = −1

2
ηµν∂µ∂νh00 (A.1.11)

Under the assumptions of the static weak-field limit, (A.1.5) can be written as

R00 =
8πG
c4

(
〈ψ| T̂00 |ψ〉 −

1

2
〈ψ| g00T̂ |ψ〉

)
+ Λg00 (A.1.12)

The trace of T̂µν , to the lowest nontrivial order, can be found by the contraction:

T̂ = gµν T̂µν = g00T̂00 = −ρ̂c2 (A.1.13)

Substituting (A.1.13) into (A.1.12) yields:

R00 =
4πG
c2
〈ψ| ρ̂ |ψ〉 − Λ (A.1.14)

Combining (A.1.11) and (A.1.14), we find:

ηµν∂µ∂νh00 = −8πG
c2
〈ψ| ρ̂ |ψ〉+ 2Λ (A.1.15)

The only nonzero terms of the Minkowski metric are on the diagonals and since the

term with time derivative ∂0h00 is also zero, the nonzero terms are, therefore, those with

double spatial indices.

∂1∂1h00 + ∂2∂2h00 + ∂3∂3h00 = ∇2h00 = −8πG
c2
〈ψ| ρ̂ |ψ〉+ 2Λ (A.1.16)

Substituting h00 = −2Φ/c2 into (A.1.16) gives:

∇2Φ = 4πG 〈ψ| ρ̂ |ψ〉 − Λc2 = 4πGm|ψ|2 − Λc2 (A.1.17)

Here, ρ̂ = m |~r〉 〈~r| is the mass density operator.
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A.2 Solution to Poisson’s Equation: Method of Green’s

Function

We will briefly discuss the method of Green’s function to solve Poisson’s equations.

Consider the following Poisson’s equation:

∇2u(~r) = ρ(~r) (A.2.1)

Suppose we have the solution to the equation:

∇2G(~r, ~r′) = δ3(~r − ~r′) (A.2.2)

where the function G(~r, ~r′) is known as the Green’s function. It can be thought of as

the response of the system to a soure at ~r = ~r′. Given some function ρ(~r), which can be

expressed in terms of a summation of delta functions, we can find a solution by summing

up all the response to such sources. Mathematically,

u(~r) =

∫
G(~r, ~r′)ρ(~r′)d3~r′ (A.2.3)

We can show that (A.2.3) is indeed a solution to (A.2.1) by substituting directly (A.2.3)

into (A.2.1). Now, we integrate (A.2.2) over a sphere of radius R centered at ~r′ with

respect to ~r. ∫
V
∇2G

(
~r, ~r′

)
dV = 1 (A.2.4)

By the divergence theorem, the left hand side of (A.2.4) becomes:∫
V
∇2G

(
~r, ~r′

)
dV =

∫
S

(∇G) · d ~A = 4πR2 dG

dr

∣∣∣∣
r=R

(A.2.5)

This yields

dG

dr
=

1

4πr2
−→ G(r) = − 1

4πr
+ const. (A.2.6)

The boundary condition that G vanishes at infinity fixes the constant to be zero and we

have

G
(
~r, ~r′

)
= − 1

4π |~r − ~r′|
(A.2.7)
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Thus, the solution to (A.2.1) is

u(~r) = − 1

4π

∫
ρ(~r′)

|~r − ~r′|
d3~r′ (A.2.8)

We can now use this general solution to solve our Poisson’s equation for the potential

(A.1.17), which gives us:

Φ(~r, t) = −Gm
∫
|ψ(~r′, t)|2

|~r − ~r′|
d3~r′ +

Λc2

4π

∫
1

|~r − ~r′|
d3~r′ (A.2.9)
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Analytic Time Evolution of the

Gaussian Wave Function

The eigenfunction of the Hamiltonian of a free particle moving in three-dimensional

space is given by:

φ~k(~r) =
1

(2π)3/2
ei
~k·~r (B.0.1)

An arbitrary wave function ψ(~r) can be expressed in terms of the eigenfunctions as

follows:

ψ(~r) =

∫ ∞
−∞

ψ̃(~k)φ~k(~r)d
3~k (B.0.2)

where

ψ̃(~k) =

∫ ∞
−∞

φ∗~k(~r)ψ(~r)d3~r (B.0.3)

In the case of spherical symmetry and substituting the expression for φ~k(~r) and φ∗k(~r),

equation (B.0.2) and (B.0.3) become:

ψ(r) =
1

2π2r

∫ ∞
0

k sin(kr)ψ̃(k)dk (B.0.4)

ψ̃(k) =
4π

k

∫ ∞
0

r sin(kr)ψ(r)dr (B.0.5)
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Substituting our initial wave function (1.4.1) into (B.0.5) and integrating by parts, we

get:

ψ̃(k) =
4π

k

(α
π

) 3
4

∫ ∞
0

r sin(kr)e−αr
2/2dr = 2

√
2
(π
α

) 3
4
e−k

2/2α (B.0.6)

Using (B.0.6) and (B.0.4), we can obtain the expressioin for ψ(r, t) as follows:

ψ(r, t) =
1

2π2r

∫ ∞
0

k sin(kr)ψ̃(k)e−
E
~ tdk (B.0.7)

=

√
2

π2r

(π
α

) 3
4

∫ ∞
0

k sin(kr) exp

[
−
(
m+ iα~t

2αm

)
k2

]
dk (B.0.8)

where we have used E = ~2k2/(2m). Integrating by parts gives us:

ψ(r, t) = (πα)−
3
4

(
αm

m+ iα~t

) 3
2

exp

(
− αm

2(m+ iα~t)
r2

)
(B.0.9)
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Appendix C

Expanding the Inverse Distance

Consider the following inverse distance between two vectors:

1

|~r − ~r′|
=
(
r2 + r′2 − 2rr′ cos γ

)− 1
2 =

1

r

[
1 +

(
r′

r

)2

− 2
r′

r
cos γ

]− 1
2

(C.0.1)

where r and r′ are the magnitude of the vectors ~r and ~r′ respectively and γ is the angle

between ~r and ~r′. Let ε =
(
r′

r

)(
r′

r − 2 cos γ
)

. For ε� 1, we can perform the binomial

expansion as follows:

1

r
(1 + ε)−1/2 =

1

r

[
1− 1

2
ε+

3

8
ε2 − 5

16
ε3 + · · ·

]
=

1

r

[
1− 1

2

(
r′

r

)(
r′

r
− 2 cos γ

)
+

3

8

(
r′

r

)2(r′
r
− 2 cos γ

)2

+ · · ·

]

=
1

r

[
1 +

(
r′

r

)
cos γ +

(
r′

r

)2 3 cos2 γ − 1

2
+ · · ·

]

Thus, (C.0.1) can be expressed in terms of the Legendre polynomials:

1

|~r − ~r′|
=

1

r

∞∑
l=0

(
r′

r

)l
Pl(cos γ) for r′ < r (C.0.2)

It is convenient to introduce the notations: r< = min {r, r′} and r> = max {r, r′}. Thus,

(C.0.2) becomes:

1

|~r − ~r′|
=

1

r>

∞∑
l=0

(
r<
r>

)l
Pl(cos γ) (C.0.3)
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APPENDIX C. EXPANDING THE INVERSE DISTANCE

The addition theorem of spherical harmonics is given by:

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

Y m
l (θ, φ)Y m

l (θ′, φ′)∗ (C.0.4)

Here, θ and φ represent the anglular coordinates of ~r; θ′ and φ′ represent the anglular

coordinates of ~r′; and γ is the angle between ~r and ~r′.The derivation of the addition

theorem of spherical harmonics can be found in [13]. Substituting (C.0.4) into (C.0.3)

gives:

1

|~r − ~r′|
= 4π

∞∑
l=0

1

2l + 1

rl<

rl+1
>

l∑
m=−l

Y m
l (θ, φ)Y m

l (θ′, φ′)∗ (C.0.5)

With (C.0.5) in mind, we can solve the following integral in a relatively simple way.

∫
dΩ′

|~r − ~r′|
= 4π

∞∑
l=0

1

2l + 1

rl<

rl+1
>

l∑
m=−l

Y m
l (θ, φ)

∫
Y m
l (θ′, φ′)∗dΩ′ (C.0.6)

|
∫
Y m
l (θ′, φ′)∗dΩ′ =

√
4π

∫
Y 0

0 (θ′, φ′)Y m
l (θ′, φ′)∗dΩ′

| Spherical Harmonics are orthonormal, so

|
∫
Y m
l (θ′, φ′)∗dΩ′ =

√
4πδl0δm0

=
4π

r>
Y 0

0 (θ, φ)
√

4π

Therefore, we have

∫
dΩ′

|~r − ~r′|
=


4π

r
if r′ < r

4π

r′
if r′ > r

(C.0.7)
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APPENDIX C. EXPANDING THE INVERSE DISTANCE

Hence, the integral describing our potential can be simplified into the following form in

the case of a spherically symmetric wave function:

Φ(r, t) = −Gm
∫ ∞

0
|ψ(r′, t)|2r′2

∫
dΩ

|~r − ~r′|
dr′ +

Λc2

4π

∫ ∞
0

r′2
∫

dΩ

|~r − ~r′|
dr′

= −4πGm
(

1

r

∫ r

0
|ψ(r′, t)|2r′2dr′ +

∫ ∞
r
|ψ(r′, t)|2r′dr′

)
+ Λc2

(
1

r

∫ r

0
r′2dr′ +

∫ ∞
r

r′dr′
)

(C.0.8)
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Appendix D

Numerics Written in MATLAB

Here we present the numerics used to solve the SNΛ equation written in MATLAB.

This numerics can also be used to recover the solutions to SN equation by setting the

parameter Λ to be zero.

1 t i c

2 c l e a r

3 c l c

4

5 %Parameters

6 alpha = 1.78E−4; %Gaussian parameter

7 N = 370 ; %Number o f po s i t i on−s tep

8 Nt = 12000 ; %Number o f time−s tep

9 j = l i n s p a c e (0 ,8E2 ,N) ’ ; %Pos i t i on range

10 dr = j (2 ) − j ( 1 ) ; %S i z e o f po s i t i on−s tep

11 n = l i n s p a c e ( 0 , 1 . 1 E18 , Nt) ; %Time range

12 dt = n (2) − n (1) ; %S i z e o f time−s tep

13

14 %Constants

15 G = 6.674E−11; %Grav i t a t i ona l constant (mˆ3kgˆ−1s ˆ−2)

16 hbar = 1.0546E−34; %Planck Constant ( Joule . second )

17 m = 5E−20; %mass o f p a r t i c l e ( kg )

18 lambda = 1.36E−52; %Cosmologica l Constant (mˆ−2)

19 c = 3E8 ; %Speed o f l i g h t (m/ s )

20 R = dt /( dr ˆ2) ;

21 K = 1 i ∗hbar /(8∗m) ;
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APPENDIX D. NUMERICS WRITTEN IN MATLAB

22 P = 1 i ∗dt /(2∗ hbar ) ;

23

24 %Diagonal Vector

25 DV = ze ro s (N, 1 ) ;

26

27 %Superdiagonal Vector

28 SuperDV = ze ro s (N, 1 ) ;

29 f o r i = 2 :N

30 SuperDV( i ) = −K∗R∗(1−1/ i ) ;

31 end

32

33 %Subdiagonal Vector

34 SubDV = ze ro s (N, 1 ) ;

35 SubDV(1) = −6∗K∗R;

36 f o r i = 2 :N−1

37 SubDV( i ) = −K∗R∗(1+1/ i ) ;

38 end

39

40 %I n i t i a l Wavefunction

41 Psi = ze ro s (N, Nt) ;

42 f o r i = 1 :N

43 Psi ( i , 1 ) = ( alpha / p i ) ˆ(3/4) ∗exp(−alpha ∗( j ( i ) ˆ2) /2) ;

44 end

45

46 B = ze ro s (N, 1 ) ;

47 D = ze ro s (N, 1 ) ;

48 X = ze ro s (N, Nt) ;

49 V = ze ro s (N, Nt) ; %P o te n t i a l matrix

50

51 f o r k = 1 : Nt−1

52 %P ot en t i a l

53 I1 = 0 ;

54 I2 = 0 ;

55 I3 = 0 ;

56 I4 = 0 ;

57 f o r i = 0 :N−1
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APPENDIX D. NUMERICS WRITTEN IN MATLAB

58 i f i == 0

59 I1 = 0 ;

60 I2 = sum( Psi ( 1 :N, k ) .∗ conj ( Ps i ( 1 :N, k ) ) . ∗ ( 0 :N−1) ’ ) ;

61 I3 = 0 ;

62 I4 = sum( j ( 1 :N) ) ;

63 V(1 , k ) = −4∗pi ∗G∗(m∗dr ) ˆ2∗ I2+lambda∗m∗( dr ) ˆ2∗ c ˆ2∗ I4

;

64 e l s e

65 I1 = sum( Psi ( 1 : i , k ) .∗ conj ( Ps i ( 1 : i , k ) ) . ∗ ( 0 : i −1) ’ . ˆ 2 )

;

66 I2 = sum( Psi ( i +1:N, k ) .∗ conj ( Ps i ( i +1:N, k ) ) . ∗ ( i :N−1)

’ ) ;

67 I3 = sum ( ( j ( 1 : i ) ) . ˆ 2 ) ;

68 I4 = sum( j ( i +1:N) ) ;

69 V( i +1,k ) = −4∗pi ∗G∗(m∗dr ) ˆ2∗((1/ i ) ∗ I1+I2 )+lambda∗m∗
c ˆ2∗ ( ( (1/ i ) ∗ I3 ) +(( dr ) ∗ I4 ) ) ;

70 end

71 end

72

73 %Diagonal Vector

74 DV(1) = 0.5∗(1+P∗V(1 , k )+12∗K∗R) ;

75 DV( 2 :N) = 0.5∗(1+P∗V( 2 :N, k )+2∗K∗R) ;

76

77 B(1) = DV(1) ;

78 D(1) = Psi (1 , k ) ;

79 f o r i = 2 :N

80 B( i ) = DV( i )−SuperDV( i ) ∗SubDV( i −1)/B( i −1) ;

81 D( i ) = Psi ( i , k )−SuperDV( i ) ∗D( i −1)/B( i −1) ;

82 end

83 X(N, k ) = D(N) /B(N) ;

84 f o r i = N−1:−1:1

85 X( i , k ) = (D( i )−SubDV( i ) ∗X( i +1,k ) ) /B( i ) ;

86 end

87 Psi ( : , k+1) = X( : , k )−Psi ( : , k ) ;

88 end

89
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90 %Plot Wavefunction

91 f i g u r e

92 p lo t ( j , Ps i ( : , 1 ) .∗ conj ( Ps i ( : , 1 ) ) .∗ j ( : ) . ˆ 2 ) ;

93 hold on

94 p lo t ( j , Ps i ( : , 4 0 0 0 ) .∗ conj ( Ps i ( : , 4 0 0 0 ) ) .∗ j ( : ) . ˆ 2 ) ;

95 p lo t ( j , Ps i ( : , 8 0 0 0 ) .∗ conj ( Ps i ( : , 8 0 0 0 ) ) .∗ j ( : ) . ˆ 2 ) ;

96 p lo t ( j , Ps i ( : , 1 2 0 0 0 ) .∗ conj ( Ps i ( : , 1 2 0 0 0 ) ) .∗ j ( : ) . ˆ 2 ) ;

97 t i t l e ( ’ Numerical SN\Lambda Plot ’ ) ;

98 x l a b e l ( ’ r (m) ’ ) ;

99 y l a b e l ( ’ | \ p s i |ˆ2 r ˆ2 ’ ) ;

100 l egend ( ’ t = 1 ’ , ’ t = 4000 ’ , ’ t = 8000 ’ , ’ t = 12000 ’ ) ;

101

102 toc
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