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Abstract

A single Bell’s inequality is violated by quantum predictions and demonstrates

impossibility of classical-like model beyond quantum statistics. Interestingly, sev-

eral Bell inequalities often cannot be violated simultaneously–a fact known as Bell

monogamy. In this thesis we will formulate a method within graph theory to obtain the

Bell monogamy relations from no-signalling principle. We also borrowed the deriva-

tion used to obtain the entropic uncertainty relation to re-derive the bound on Bell

monogamy relation using the correlation complementarity principle. It is shown that a

tighter bound could in principle be obtained using this new derivation. We introduce

the notion of elementary monogamy relations and solve completely their existence

for bipartite Bell inequalities. We obtain three elementary tripartite Bell monogamy

relations from the complementarity principle and we conjecture that there is no finite

set of elementary Bell monogamy relations in the multipartite case.
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Chapter 1

Introduction

Looking at the equations of quantum mechanics, the world we live in indeed seems

bizarre. Quantum mechanics was introduced to explain conundrums in classical

physics such as the blackbody radiation, photoelectric effect and electron orbital

stability, and the basic foundation of quantum mechanics was in placed in the 1930s.

It remains undoubtedly one of the most accurate descriptions of the natural world.

However, we hardly have any intuition in quantum mechanics, probably because

our classical notion of local reality is not build in quantum mechanics. Even Albert

Einstein had his various tensions with this paradigm shift[1]. In 1964, a Northern Irish

physicist John Bell published an important no-go theorem in quantum mechanics,

the Bell’s theorem[2], which challenged the concept of local realism handed down

by Galileo and Newton. It was found that Bell inequalities are monogamous[3], but

the guiding principle for the monogamy still remains unknown. In this thesis we will

explore the Bell’s theorem and derive Bell monogamy relations from various general

principles.

In Chapter 2, we review the Bell’s theorem which shows that quantum mechanics

cannot be explained by any local hidden variable theories. Then, in Chapter 3, we will

introduce the concept of Bell monogamy, and look at some fundamental principles and
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methods to obtain the Bell monogamy relations, namely the no-signalling principle,

Schmidt decomposition method, and complementarity principle.

We present a graph theoretic method to obtain the bound from no-signalling

principle for any arbitrary systems. Next we show that Schmidt decomposition can

be used to obtain Bell monogamy relations. After that we re-derive the result from

complementarity principle to obtain Bell monogamy relations using the method in [4].

Obtaining the Bell monogamy relation from complementarity is equivalent to solving

for the clique covering number of the complementarity graph, which is a NP-complete

problem, and we will provide an algorithm to attempt to solve it. We show that by

averaging the elementary relations we can compute the Bell monogamy relations more

quickly, although the efficiency is still limited as the problem is still NP-complete.

In Chapter 4, we focus on the complementarity principle to obtain tight Bell

monogamy relations. We first review the bipartite Bell monogamy relations and in-

troduced the notion of elementary monogamy relation. We then extend it to tripartite

monogamy relations. We also provided a recipe to construct a group of elementary

Bell monogamy relations for k-partite relations, which we call the frankenstein graphs.

Finally, we conjecture that the complementarity principle alone is insufficient to ob-

tain tight Bell monogamy relations and we have potential candidates (M -cycle graph)

to affirm our belief.
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Chapter 2

Bell’s Theorem and Bell

Monogamy

Quantum entanglement is one of the most bizarre features predicted by quantum

mechanics. With entanglement it is possible to produce correlations that are stronger

than intuitively possible. Einstein, Podolsky and Rosen picked up on this and pub-

lished the celebrated paper in 1935 to show that quantum entanglement leads to a

paradox, commonly known as the EPR paradox[1]. Because of the apparent internal

inconsistency, the authors believe that quantum mechanics is an incomplete theory.

The EPR argument is included in Appendix (A) for completeness.

In 1964, Bell provided a possible way to resolve the EPR paradox experimentally[2].

He formulated the Bell’s inequality and show that all physical theory of local hidden

variables (LHV) must obey this inequality while quantum mechanics is able to vio-

late. In essence, Bell’s theorem asserts that no physical theory of LHV can replicate

all the predictions of quantum mechanics. This has serious implication as it implies

that if the EPR argument is right, then quantum mechanics is wrong (and not just

incomplete)[5].
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Since then many experiments were conducted to investigate this theorem[6, 7,

8, 9, 10, 11, 12]. Despite having experimental loopholes, these experiments demon-

strated violation of different variant of Bell’s inequalities, which confirm that nature

is fundamentally nonlocal.

In the later sections, we will look at what is a LHV theory and review one of the

more common variant of Bell’s inequalities, the Clauser-Horne-Shimony-Holt (CHSH)

inequality[13]. We will also give a brief introduction to Bell monogamy relations.

2.1 Setting the Scene

A typical Bell-type experiment consists of two spatially separated observers, Alice

and Bob. Each of them receives a part of a quantum system, performs a few measure-

ments on their subsystem and obtains some measurement outcomes. After obtaining

these measurement outcomes, Alice and Bob come together to calculate some Bell’s

inequalities to see whether they succeeded in violating the inequalities.

Throughout this thesis we will assume that there are two measurement settings

for each observer and for every measurement setting there are two possible outcomes,

otherwise stated. We will denote the measurement settings in capital–{A1, A2} and

{B1, B2}–and the measurement outcomes for each measurement setting in small–

{a1, a2} and {b1, b2}. The possible measurement outcomes are only ±1. This scenario

is shown in the Figure (2.1) below.

There is a probability distribution for each pair of measurement outcomes given

the pair of measurement settings. This is written as:

p(aj, bk|Aj, Bk). (2.1)

There are a few reasonable assumptions we can make about these experimental set-up

which we can use to simplify the probability distribution.
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Figure 2.1: Alice on the left and Bob on the right receive subsystem A and B respec-
tively. Each of them is able to choose freely one of the two independent measurement
settings as indicated by the red arrow. There are two possible measurement outcome
as indicated by the bulbs.

Assumption 1: Free will of measurement – The measurement settings chosen by

Alice and Bob are of their free will.

This means that the measurement settings chosen are not influenced by any ex-

ternal forces. This can be stated mathematically as:

p(X|Y ) = p(X), (2.2)

where X is the setting chosen by party X and Y is the setting chosen by party Y.

Assumption 2: Locality – The outcome of measurements of one party is inde-

pendent of the measurement settings and measurement outcomes of another party.

Assumption 2 means that measurement outcomes cannot influence each other if

they are spacelike separated. In other words, measurement outcomes are independent

from any action at a distant. At first sight, this assumption seems like a restatement

of the principle of causality. However, it is possible to have nonlocal phenomena while

preserving causality because no information is transmitted, i.e. quantum entanglement

shows nonlocal effects but these effects do not transmit information. Mathematically
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this condition can be expressed as

p(aj|Aj, Bk, bk) = p(aj|Aj), (2.3a)

p(bk|Bk, Aj, aj) = p(bk|Bk). (2.3b)

Assumption 3: Realism – It refers to the simultaneous existence (i.e. well de-

fined values) of outcomes of all possible observables(even for those which cannot be

measured simultaneously).

Assumption 3 is part of a philosophical debate on whether consciousness causes

a collapse of wavefunction. In this thesis, we will assume that the world is mind-

independent, and the outcomes of those measurements that were not made are as

real as those that were made, even if those outcomes can only be determined after

the measurements.

With these three assumptions we can make useful predictions on the strength

of correlation displayed by nature. Quantum correlations are stronger than classical

correlations, and this is usually shown through the violation of Bell’s inequalities and

the non-contextual inequalities. In this thesis we will only focus on Bell’s theorem

and we will include quantum contextuality in appendix (B) for completeness.

2.2 Bell-CHSH Inequality

Bell-CHSH is one of the more common variants of Bell’s inequality. The Bell-CHSH

parameter B is defined to be

B = E(A1, B1)− E(A1, B2) + E(A2, B1) + E(A2, B2), (2.4)

where E(Aj, Bk) is defined to be the expectation value of the product of measurement

outcomes {aj, bk}, also known as the correlation function.
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We will look at the bound of this particular inequality for the three different

assumptions–LHV theory, quantum mechanics, and no-signalling principle.

An LHV theory assumes that nature can be explained by a local theory with some

hidden variables; the randomness in quantum mechanics is attributed to the random-

ness of the hidden variables. Hence the probability distribution for p(aj, bk|Aj, Bk) is

given by:

p(aj, bk|Aj, Bk) =
∑
λ

p(aj, bk, λ|Aj, Bk)

=
∑
λ

p(λ|Aj, Bk)p(aj, bk|Aj, Bk, λ)

=
∑
λ

p(λ)p(aj, bk|Aj, Bk, λ),

(2.5)

where λ is a set of hidden variables. From the second to the last step, we used the

assumption of free will to simplify the probability of the hidden variables given the

local measurement settings.

Furthermore, using the assumption on locality we can further simplify the prob-

ability distribution

p(aj, bk|Aj, Bk) =
∑
λ

p(λ)p(aj|Aj, λ)p(bk|Bk, λ). (2.6)

Fine published an important result on the condition of probability distribution of

a LHV model[14]. A short proof is provided in Appendix (D).

Theorem 2.2.1. An LHV model exist if and only if there exist a joint probability

distribution for the outcomes of all possible measurement settings.

This joint probability must return the correct marginals for all possible physical

set-ups,

p(aj, bk|Aj, Bk) =
∑

ax|x 6=j,by |y 6=k
p(a1, a2, b1, b2|A1, A2, B1, B2). (2.7)
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With all these conditions on the probability distribution, the Bell-CHSH param-

eter is found to be bounded by BLHV ¬ 2. The value 2 is also known as the local

realistic bound.

Quantum mechanics allows a violation of the LHV bound up to BQM ¬ 2
√

2. This

maximum value is also known as the Tsirelson’s bound[15]. Although we know the

value of the quantum mechanical bound, we do not know what the guiding principles

to obtain the bound are.

No-signalling principle is a natural principle to consider to deriving the bound

on the Bell parameter as it seems like a restatement of the causality principle. In

mathematical terms, it states that the measurement outcomes of one party are not

influenced by the measurement settings of another spacelike separated party:

p(aj|Aj, Bk) = p(aj|Aj), (2.8)

p(bk|Aj, Bk) = p(bk|Bk). (2.9)

However, the bound derived from the no-signalling principle violates the quantum

mechanical bound up to BNS ¬ 4[16]. It was later found that no-signalling principle

is an instance of information causality[17].

A brief derivation of the bound by various models is provided in Appendix (C).

2.3 Explaining Bell Monogamy

In our previous discussions, there are only two observers (Alice and Bob) trying to

violate the local realistic bound of some Bell’s inequality. We now consider a third

observer. This third observer tries to violate the same type of Bell’s inequality with

Alice. We will call this observer Bob-two and the original Bob as Bob-one. This can

be represented by the graph in Figure (2.2).

8



Figure 2.2: Alice on the left and two Bobs on the right. As before, each of them is
able to choose freely one of the two independent measurement settings and there are
two possible measurement outcomes as indicated by the bulbs. The thick black line
represents the pair of observers are trying to violate the Bell’s inequality, BAB1 and
BAB2 . Usually we will not include the measurement apparatus in the circles.

From [3], it was found that the two Bell parameters, BAB1 and BAB2 , are related

in quantum mechanics as

B2AB1 + B2AB2 ¬ 8. (2.10)

This equation shows that if BAB1 > 2, then BAB2 < 2; this shows a trade-off between

the strength of violation of the Bell’s inequalities because when one Bell parameter

is allowed to violate the local realistic bound, the other one cannot violate the local

realistic bound. The trade-off between the maximum values of the Bell parameters

is called Bell monogamy relation. We can also see that the Tsirelson’s bound is a

collorary of equation (2.10) as we can set one of terms to zero to obtain the bound.

A weaker monogamy relation from the no-signalling principle is obtained in [18]

as

BAB1 + BAB2 ¬ 4, (2.11)
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and the equations for LHV theories are

BAB1 ¬ 2,

BAB2 ¬ 2.
(2.12)

A graph is plotted in Figure (2.3) to show the differences between the bound

obtained from LHV theories, quantum mechanics, and no-signalling principle.

Figure 2.3: The region within the blue line is the bound obtained from the no-
signalling (NS) principle, the green line is the bound obtained from quantum me-
chanics, and the red line is the bound obtained from LHV theories.

Before proceeding to the next chapter, we will introduce some terms that will be

used throughout the thesis.

The Bell monogamy relation is called bipartite if there are only two-observers

involved in each Bell parameter. So far we have only looked at bipartite monogamy

relations. Bipartite monogamy relations can be represented by bipartite graphs like

in Figure (2.2). A vertex (a dot) in the bipartite graph represents an observer and an
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edge (a line) between two vertices, say Alice and Bob, represents the Bell parameter

BAB.

Likewise a k-partite relation is if there are k-observers involved in each Bell pa-

rameter. k-partite relations can be represented by a hypergraph called the k-partite

graph; the vertices represent the observers, and the hyperedges represent the Bell

parameters for the k observers in it. An example of a tripartite graph is shown in

Figure (2.4).

Figure 2.4: A hypergraph showing tripartite monogamy relation.

In the next section, we will look at some general principles to obtain the Bell

monogamy relations.
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Chapter 3

Principles and Methods to obtain

Bell Monogamy relation

3.1 No-signalling Principle

No-signalling principle plays a special role in quantum mechanics. It implies many

no-go theorems, i.e. no-cloning theorem and no-broadcasting theorem[19, 20], and

their corollary, the no-deleting theorem.

The no-signalling principle can be used to derive the bound for Bell monogamy re-

lations. We identified a fault in [21] for deriving the bound for multipartite monogamy

relations, and we will present an alternative approach to obtain the Bell monogamy

relations and formulate it as a problem in graph theory.

We will look at bipartite Bell monogamy relations first. Any bipartite Bell param-

eter can be expressed as

BA,Bi =
2∑

j,k=1

∑
a,b=±1

α(j, k, a, b)p(aj = a, bik = b|Aj, Bi
k), (3.1)

where α(j, k, a, b) is any arbitrary function. This Bell parameter has a local realistic

bound R. For example in Bell-CHSH parameter in equation (2.4), α(j, k, a, b) = ab for
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{j, k} = {1, 1}, {2, 1}, {2, 2} and α(j = 1, k = 2, a, b) = −ab, and the local realistic

bound is 2.

Consider the case where the monogamy relation is between Alice and two Bobs.

The Bell parameter for Alice and Bob-one is denoted by BAB1 and for Alice and Bob-

two is denoted by BAB2 . Adding the two Bell parameters together and rearranging

the terms,

BAB1 + BAB2 =
∑
a,b

[
α(1, 1)p(a1, b11) + α(1, 2)p(a1, b12) + α(2, 1)p(a2, b11) + α(2, 2)p(a2, b12)

+ α(1, 1)p(a1, b21) + α(1, 2)p(a1, b22) + α(2, 1)p(a2, b21) + α(2, 2)p(a2, b22)
]

=
∑
a,b

{[
α(1, 1)p(a1, b11) + α(1, 2)p(a1, b22) + α(2, 1)p(a2, b11) + α(2, 2)p(a2, b22)

]
+
[
α(1, 1)p(a1, b21) + α(1, 2)p(a1, b12) + α(2, 1)p(a2, b21) + α(2, 2)p(a2, b12)

]}
= B1 + B2,

(3.2)

where we have made the equation more readable by writing α(j, k, a, b) ≡ α(j, k) and

p(aj = a, bik = b|Aj, Bi
k) ≡ p(aj, bik), and

B1 ≡ α(1, 1)p(a1, b11) + α(1, 2)p(a1, b22) + α(2, 1)p(a2, b11) + α(2, 2)p(a2, b22),

B2 ≡ α(1, 1)p(a1, b21) + α(1, 2)p(a1, b12) + α(2, 1)p(a2, b21) + α(2, 2)p(a2, b12).

Note that the coefficients for the probabilities, α(j, k), in B1 and B2 have the same

structure as the Bell parameter. It is, hence, possible to construct a joint probability

distribution

p(a1, a2, b11, b
2
2) =

p(a1, b11, b
2
2)p(a2, b

1
1, b
2
2)

p(b11, b22)
, (3.3a)

p(a1, a2, b12, b
2
1) =

p(a1, b21, b
1
2)p(a2, b

2
1, b
1
2)

p(b21, b12)
, (3.3b)
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where the probabilities p(a1, b11, b
2
2), p(a2, b

1
1, b
2
2), p(a1, b

2
1, b
1
2) and p(a2, b21, b

1
2) exist be-

cause the measurements are done by different observers. This joint probability dis-

tribution returns all the necessary marginal probabilities because of the no-signalling

principle

∑
a1

p(a1, b11, b
2
2) = p(b11, b

2
2) =

∑
a2

p(a2, b11, b
2
2), (3.4)

∑
a1

p(a1, b21, b
1
2) = p(b21, b

1
2) =

∑
a2

p(a2, b21, b
1
2). (3.5)

Therefore, by Theorem 2.2.1, B1 ¬ R and B2 ¬ R. Hence we obtain the monogamy

relation as in equation (2.11),

BAB1 + BAB2 = B1 + B2 ¬ 2R. (3.6)

The concept behind this derivation of monogamy relations is to arrange the terms

of the Bell parameters into as little groups as possible, such that it is possible to

construct a valid joint probability distribution for each group using the no-signalling

principle. Each group must have similar structure as the original Bell parameters

so that the groups are bounded by the local realistic bound. Using this concept we

will construct a method to obtain the bound on the monogamy relation for k-partite

systems.

Before proceeding, we will briefly introduce two terms in graph theory, clique and

chromatic number. A clique is a graph where all its vertices are adjacent to each other.

Chromatic number of a graph is the minimum number of colours needed to paint the

vertices such that no adjacent vertices have the same colour.

We will use the monogamy of BAB1C1 and BAB2C2 shown in Figure (2.4) as a

walkthrough of this construction. We separate the observers into two sets, the common

observers (CO) set and the not common observers (NCO) set. The red dot in Figure

14



(2.4) represents observer A the CO, and the two blue and two yellow dots represent

observers B1, B2, C1 and C2 respectively, and they are the NCO.

In the NCO set, represent the measurement settings from every possible observa-

tion combinations as a vertex. Connect the vertices with an edge if they are from the

same observers, or if they have the same combination of measurement settings. After

constructing this NCO graph, evaluate its chromatic number χNCO. The NCO graph

for the walkthrough example is shown in Figure (3.1).

Figure 3.1: This graph shows the NCO graph for the monogamy of BAB1C1 and BAB2C2 .
Every vertex represents a measurement setting in the NCO set. Vertices in a row are
from the same observers, and vertices in a column have the same combination of
measurement settings. Hence, vertices lined up in a row or a column form a clique.
The chromatic number of this graph is χNCO = 4.

In the CO set, represent every possible measurement settings as a vertex. Connect

the vertices with an edge if they have at least one observer with the same setting.

After constructing this CO graph, again, evaluate its chromatic number χCO. The

CO graph for the walkthrough example is shown in Figure (3.2).

Figure 3.2: This graph shows the CO graph for the monogamy of BAB1C1 and BAB2C2 .
Every vertex represents a measurement setting in the CO set. Connect vertices with at
least one observer having the measurement setting with an edge. In this example there
are no measurement settings with the same observer measuring the same measurement
setting. The chromatic number χCO = 1.
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After evaluating χNCO and χCO, multiply them together to obtain the bound on

the monogamy relation.

We construct the graphs in this way because it ensures that it is possible to

construct a joint probability distribution.

Referring to the walkthrough example, the vertices with the same colour in the

NCO graph, for instance yellow colour, ensure that the probability p(b11, c
1
1, b
2
1, c
2
2) exist

and is consistent with the structure of the Bell parameter. The vertices with the same

colour in the CO graph ensure that we can construct a valid joint probability like in

equation (3.3). Therefore the joint probability can be constructed in this manner:

p(a1, a2, b11, c
1
1, b
2
1, c
2
2) =

p(a1, b11, c
1
1, b
2
1, c
2
2)p(a2, b

1
1, c
1
1, b
2
1, c
2
2)

p(b11, c11, b21, c22)
. (3.7)

We multiply the chromatic numbers together because every colour in the CO graph

can be combined together with every colour group in the NCO graph to form a valid

joint probability distribution. Hence the monogamy relation from the no-signalling

principle for the walkthrough example is

BAB1C1 + BAB2C2 ¬ 4R. (3.8)

We will provide another example to make the processes clearer. We will look at

the monogamy of BABC1 and BABC2 . The NCO set consists of observers {C1, C2} and

the CO set consists of observers {A,B}.

The NCO graph is in Figure (3.3a) and χNCO = 2. The CO graph is in Figure

(3.3b) and χCO = 2.

We are able to construct the joint probability distribution for, say, the yellow and

blue groups

p(a1, b1, a2, b2, c11, c
2
2) =

p(a1, b1, c11, c
2
2)p(a2, b2, c

1
1, c
2
2)

p(c11, c22)
. (3.9)
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(a) The NCO graph. The
chromatic number χNCO =
2.

(b) The CO graph. The
chromatic number χCO =
2.

Figure 3.3: Monogamy relation for BABC1 and BABC2 .

Hence it is bounded by the local realistic bound R. Likewise for every other combi-

nation of colours of the NCO and CO graphs. Therefore the no-signalling bound for

the monogamy relation is

BABC1 + BABC2 ¬ χNCOχCO ×R = 4R. (3.10)

We would like to give some remarks on our method to derive Bell monogamy

relations from no-signalling principle. Our method reduces to the same result in [21]

for bipartite monogamy when we take the same assumption as in the paper (the

number of Bobs must be greater than or equals to the number of settings of each

Bob). Furthermore, we would like to clarify that the bound for multipartite case in

the paper is incorrect and it is not
∑n
m=1 B ~A, ~Bm ¬ nR, where ~A are the common

observers, ~Bm are the non-common observers for the mth Bell parameter, and n is

the number of settings for each ~Bm. This can be seen from the last example of this

section where the bound from the result of the paper is 2R, in contrast to equation

(3.10). The reason for this error is that no-signalling between individual observers

cannot be assumed in the multipartite case.
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3.2 Schmidt decomposition

In this section, we will demonstrate how Schmidt decomposition can be used to obtain

simple Bell monogamy relations of a composite system. We will show this by an

example of a 3-qubit system.

Schmidt decomposition is a mathematical theorem that expresses a vector as the

tensor product of two inner product spaces. Formally the theorem states that for

any vector |ψ〉 ∈ H1 ⊗H2 where {|v1〉 , ..., |vn〉} ⊂ H1 and {|w1〉 , ..., |wm〉} ⊂ H2 are

Hilbert spaces of dimensions n and m, n ¬ m, and 〈vj|vk〉 = δjk and 〈wj|wk〉 = δjk,

|ψ〉 can be expressed as

|ψ〉 =
n∑
j=1

λj |v〉j ⊗ |w〉j , (3.11)

where λj ­ 0.

Applying Schmidt decomposition on a 3-qubit state, we can write the state as

|ψ〉 = λ1 |01〉 |w23〉1 + λ2 |11〉 |w23〉2 , (3.12)

where {|01〉 , |11〉} are the eigenstates for the first qubit, and |w23〉1 and |w23〉2 are

two orthonormal states in the combine Hilbert space of the second and third qubits.

Taking the partial trace over qubit 2 and 3, the reduced density matrix is

ρ1 = λ21 |0〉 〈1|+ λ22 |0〉 〈1| . (3.13)

Taking the partial trace over qubit 1, one obtains a similar reduced density matrix

ρ23 = λ21 |w23〉1 〈w23|1 + λ22 |w23〉2 〈w23|2 . (3.14)
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Taking the trace of the square of the two reduced density matrices, one obtains

tr(ρ21) = tr(ρ223) = λ41 + λ42. (3.15)

In the next part of this section (and subsequent sections), we will rely on an

important result from [22]. The proof of the result is in Appendix (E).

An arbitrary N -qubit state can be expressed as

ρ =
1

2N

3∑
µ1,...,µN=0

Tµ1...µNσ
1
µ1
⊗ ...⊗ σNµN , (3.16)

where σj0 is the identity operator and σjxj are the local Pauli operators for the three

orthogonal directions xj = 1, 2, 3 in the Hilbert space of the jth qubit. The set of

components Tµ1...µN = tr(ρ.(σ1µ1 ⊗ ... ⊗ σ
N
µN

)) corresponding to the three orthogonal

Pauli operators forms the correlation tensor, T̂ . The N -qubit state admits a LHV

model if the condition

B2 ¬
2∑

x1,...,xN=1

T 2x1...xN ¬ 1 (3.17)

holds for any local coordinate systems. Note that we have set the local realistic bound

for the Bell parameter to 1.

Rather than using the Schmidt decomposition to represent the 3-qubit state, we

can represent the state as in equation (3.16)

ρ =
1
8

 3∑
µ1,µ2,µ3=0

Tµ1µ2µ3σ
1
µ1
⊗ σ2µ2 ⊗ σ

3
µ3

 . (3.18)
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Since the Pauli operators are traceless and the identity operator (of dimension 2) has

trace 2, the reduced density matrix for qubit 1 is

ρ1 = tr23

1
8

 3∑
µ1,µ2,µ3=0

Tµ1µ2µ3σ
1
µ1
⊗ σ2µ2 ⊗ σ

3
µ3


=

1
2

σ10 +
3∑
j=1

Tj00σ
1
j

 .
(3.19)

The reduced density matrix for qubit 2 and 3 is

ρ23 =
1
4

σ20 ⊗ σ30 +
3∑
j=1

T0j0σ
2
j ⊗ σ30 +

3∑
j=1

T00jσ
2
0 ⊗ σ3j +

3∑
j,k=1

Tjkσ
2
j ⊗ σ3k.

 (3.20)

Calculating the trace of ρ21 and ρ223 and using the property in equation (3.15),

1
2

1 +
3∑
j=1

T 2j00

 =
1
4

1 +
3∑
j=1

T 20j0 +
3∑
j=1

T 200j +
3∑

j,k=1

T 20jk

 . (3.21)

Repeating these procedures to qubit 2 and qubit 3, one obtains the other two

relations

1
2

1 +
3∑
j=1

T 20j0

 =
1
4

1 +
3∑
j=1

T 2j00 +
3∑
j=1

T 200j +
3∑

j,k=1

T 2j0k

 , (3.22)

1
2

1 +
3∑
j=1

T 200j

 =
1
4

1 +
3∑
j=1

T 2j00 +
3∑
j=1

T 20j0 +
3∑

j,k=1

T 2jk0

 (3.23)

Adding these three relations and simplifying it, one obtains the following monogamy

relation:
3∑

j,k=1

T 2jk0 +
3∑

j,k=1

T 2j0k +
3∑

j,k=1

T 20jk = 3. (3.24)

This is a monogamy relation because it relates the correlation tensor between pairs

of qubits–the first term is the correlation tensor for the first and second qubits, the

second term is for the first and third qubits and the last term is for the second and
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last qubits. The sum of the squares of the correlation tensors is 3, regardless of how

we achieve it. This shows a trade-off between the values of the correlation tensors.

Note that the terms in equation (3.24) does not relate to Bell’s inequality as the

terms have a different form as in equation (3.17). However we can set it as an upper

bound to the Bell monogamy relation,

B212 + B213 + B223 ¬
2∑

j,k=1

T 2jk0 +
2∑

j,k=1

T 2j0k +
2∑

j,k=1

T 20jk

¬
3∑

j,k=1

T 2jk0 +
3∑

j,k=1

T 2j0k +
3∑

j,k=1

T 20jk

= 3.

(3.25)

In Section (3.3), we will show that more Bell monogamy relations are needed to

describe this quantum mechanical systems of 3-qubits.

3.3 Correlation complementarity principle

Complementarity is the bedrock of the uncertainty principle in quantum mechanics.

It was found in [23] that complementarity principle plays an important role in Bell

monogamy relations within quantum formalism. Due to its importance, we will show

how it relates to Bell monogamy relations as in the paper.

3.3.1 Bound on the Bell parameter

Theorem 3.3.1. Within quantum formalism, any pair of complementary dichotomic

observables with eigenvalues +1 and −1 anticommutes.

Proof. Consider two complementary dichotomic observables Â and B̂ with eigenvalues

+1 and −1. Let the eigenstates of Â with eigenvalue +1 be |a〉. From complementarity,

it is required that 〈a| B̂ |a〉 = 0, which implies that B̂ |a〉 = |a⊥〉, where |a⊥〉 is or-

thogonal to |a〉. Since B̂2 = 1, one obtains B̂ |a⊥〉 = |a〉. Hence, |b〉 = 1√
2

(|a〉+ |a⊥〉).
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Similarly, from complementarity, it is required that 〈b| Â |b〉 = 0, which is true only if

|a⊥〉 is the eigenstate for eigenvalue −1 of the observable Â. Applying this argument

to all +1 eigenstates of A, we can write these operators as

Â =
∑
a |a〉 〈a| − |a⊥〉 〈a⊥| , (3.26a)

B̂ =
∑
a |a⊥〉 〈a|+ |a〉 〈a⊥| , (3.26b)

and the operators have the same dimensionality. It is easy to verify that these two

operators anticommute,

{Â, B̂} =
∑
a

[
(|a〉 〈a| − |a⊥〉 〈a⊥|) (|a⊥〉 〈a|+ |a〉 〈a⊥|)

+ (|a⊥〉 〈a|+ |a〉 〈a⊥|) (|a〉 〈a| − |a⊥〉 〈a⊥|)
]

=
∑
a

[(|a〉 〈a⊥| − |a⊥〉 〈a|) + (|a⊥〉 〈a| − |a〉 〈a⊥|)]

= 0.

(3.27)

Theorem 3.3.2. For a set of anticommuting dichotomic observables {Âj} with eigen-

values +1 and −1, the following inequality holds

∑
j

α2j ¬ 1, (3.28)

where αj are the expectation value of the operators Âj.

Proof. Consider a set of anticommuting operators {Âj}. Define the operator F̂ ≡∑
j αjÂj, where αj = 〈Âj〉 and |αj| ¬ 1. Taking the variance of F , one obtains

〈F̂ 2〉 − 〈F̂ 〉2 =
(∑

j α
2
j

)2
−∑j α

2
j ­ 0. Hence

∑
j

α2j ¬ 1, (3.29)

22



which completes the proof.

With these two theorems, it is easy to see how the upper bound for the quantum

mechanical bound of the Bell parameter in equation (3.17) can be obtained.

Since Pauli operators are dichotomic observables and, hence, tensor products of

Pauli operators, T̂x1...xN = σ1x1 ⊗ ... ⊗ σNxN are also dichotomic observables, then by

Theorem (3.3.1) the operators T̂x1...xN anticommute if they are complementary. Hence

it is possible to group these operators into sets, Sj, where every operator in each

set anticommutes with one another. Sj is known as anticommuting set. Writing the

expectation value of the operators, Tx1...xN = tr(T̂x1...xN .ρ), in each set as a vector,

~Sj, then by Theorem (3.3.2) the squared norm of this vector is bounded by 1. Hence

one can calculate the quantum bound of the Bell parameter by finding the minimum

number of anticommuting sets for the operators T̂x1...xN in equation (3.17),

B2 ¬
2∑

x1,...,xN=1

T 2x1...xN ¬ minimum number anticommuting sets (3.30)

3.3.2 Alternate derivation on the bound

The entropic uncertainty relation describes the uncertainty relation for incompatible

observables in information theoretic framework. In [4] the authors provided a tech-

nique to obtain the entropic uncertainty relations for dichotomic observables using

their anticommutation relations. Apart from obtaining the entropic uncertainty re-

lations, we notice that this technique is also able to obtain a stricter bound for the

Bell monogamy relations than the complementarity principle, or at least reduces to

Theorem (3.3.2). In this section, we will only provide relevant parts of the technique

presented in the paper to show how it is stronger than the complementarity principle,

and how it reduces back to Theorem (3.3.2) when we relax the condition.
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Assuming that there is a set of dichotomic observables {Â1, ..., ÂM}, the anti-

commutation matrix T is defined where it matrix elements are [T ]j,k = tr({Âj ,Âk}.ρ)
2 .

Furthermore, define the vector α where αj = tr(Ajρ) as in equation (3.28).

Consider the operator

K̂ =
∑
j

ajÂj, (3.31)

where a = (a1, ..., aM)T is any arbitrary real unit vector, and the superscript T

means taking the transpose. The trick here is to apply the Cauchy-Schwarz inequality[
tr(X†Y )

]2
¬ tr(X†X).tr(Y †Y ); setting X = K̂

√
ρ and Y =

√
ρ,

[
tr(K̂ρ)

]2
=

∑
j

ajtr(Âjρ)

2

= (aTα)(αTa)

¬ tr[(K̂
√
ρ)†(K̂

√
ρ)]tr(

√
ρ†
√
ρ)

= tr(K̂2ρ)

=
∑
j,k

ajaktr(AjAkρ)

=
∑
j,k

ajak[T ]j,k

= aTTa.

(3.32)

The inequality (3.32) holds for any general real unit vector a, hence the following

operator inequality holds,

ααT ¬ T. (3.33)

The inequality (3.33) reduces to Theorem (3.3.2) in complementarity principle.

This can be readily seen by assuming that the set dichotomic observables are all an-

ticommuting, {Âj ,Âk}2 = δjk. The anticommutation matrix T is, hence, the identity

matrix. Letting a = α
|α| where |α| =

√
αTα, inequality (3.32) reduces to

(∑
j α
2
j

)2
¬ 1

which is equivalent to equation (3.28). Inequality (3.33) is stronger than the comple-
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mentarity principle because it is not limited to only anticommuting operators; it is

at least as strong as equation (3.28).

3.3.3 Examples using complementarity to obtain the Bell

monogamy relation

We will give two examples to illustrate how the complementarity principle can be

used to obtain the bound for the Bell parameter.

The monogamy of two CHSH inequalities in equation (2.10) can be ob-

tained from the complementarity principle. The operators involved in B2AB1 are

{T̂110, T̂120, T̂210, T̂220}, and the operators involved in B2AB2 are {T̂101, T̂102, T̂201, T̂202}.

These operators can be rearranged into two anticommuting sets, {T̂110, T̂120, T̂201, T̂202}

and {T̂210, T̂220, T̂101, T̂102}. Hence the bound from complementarity principle is

B2AB1 + B2AB2 ¬ 2. Any theory that predicts a higher value would necessarily violate

the complementarity principle.

The second example we will look at is the monogamy of observer {1, 2}, {1, 3} and

{2, 3}, as in the case in Section (3.2). The operators involved in B212, B213 and B223 are

{T̂110, T̂120, T̂210, T̂220}, {T̂101, T̂102, T̂201, T̂202} and {T̂011, T̂012, T̂021, T̂022} respectively.

These operators can be sorted into 4 anticommuting sets; the bound from comple-

mentarity principle is 4. One such arrangement is {T̂110, T̂201, T̂022}, {T̂120, T̂202, T̂011},

{T̂210, T̂102, T̂021} and {T̂220, T̂101, T̂012}. However, as seen in equation (3.25), the bound

is at most 3. So is the complementarity principle not good in obtaining the bound for

this case? Apparently we can refine the techniques of complementarity to obtain the

bound of 3. We call this method duplication of operators.

As the name suggest, we duplicate the operators involved in the Bell monogamy

such that there are two copies each (2B212, 2B213 and 2B223): {T̂110, T̂120, T̂210, T̂220},

{T̂110, T̂120, T̂210, T̂220}, {T̂101, T̂102, T̂201, T̂202}, {T̂101, T̂102, T̂201, T̂202}, {T̂011, T̂012, T̂021, T̂022}

and {T̂011, T̂012, T̂021, T̂022}. We can arrange these operators into 6 anticommuting
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sets:

{T̂110, T̂120, T̂201, T̂202}, (3.34a)

{T̂110, T̂210, T̂021, T̂022}, (3.34b)

{T̂210, T̂220, T̂101, T̂102}, (3.34c)

{T̂120, T̂220, T̂011, T̂012}, (3.34d)

{T̂101, T̂201, T̂012, T̂022}, (3.34e)

{T̂102, T̂202, T̂011, T̂021}. (3.34f)

Hence the bound from complementarity is B212 + B213 + B223 ¬ 6/2 = 3.

As the duplication of operators method is often not obvious, we have devised a

simplification of this method which we call the averaging method. We notice that

this Bell monogamy relation can be obtained by averaging three bipartite relations,

namely

B212 + B213 ¬ 2,

B212 + B223 ¬ 2,

B213 + B223 ¬ 2.

(3.35)

The operators for the monogamy relation B212+B213 are in equations (3.34a,3.34c), for

B212+B223 are in equations (3.34b,3.34d), and for B213+B223 are in equations (3.34e,3.34f).

Adding these three bipartite relations together and simplifying the inequality, we

obtain the needed monogamy relation

B212 + B213 + B212 + B223+B213 + B223 ¬ 2 + 2 + 2,

B212+B213 + B223 ¬ 3.
(3.36)
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Other than obeying equation (3.36), the subsystems must also obey the relations in

equation (3.35) as was mention in the last sentence of Section (3.2).

We note that the inequalities in equation (3.35) are of a certain form, B2AB1 +

B2AB2 ¬ 2. We call this the elementary bipartite Bell monogamy relations. It is called

the elementary relation because it can be used to obtain any arbitrary bipartite

monogamy relations by the method of averaging ; it is the building block for any

arbitrary bipartite systems. We will study more on bipartite and tripartite elementary

relations in the next chapter.

3.3.4 Algorithm to solve for the bound

The bound obtained from complementarity principle is based on arranging the op-

erators into as little anticommuting sets as possible. This can be translated into a

well-known problem in graph theory, clique cover problem.

We construct the anticommuting graph and find its minimum clique cover number.

The minimum clique cover number of a graph is the minimum number of cliques

needed to cover all the vertices in the graph.

The vertex set of the anticommuting graph consist of the operators involved in

the Bell monogamy. Two vertices are connected with an edge if they anticommute.

An example of the anticommuting graph of B212 + B213 is shown in Figure (3.4).

The minimum clique cover problem can be solved exactly by solving the chromatic

number of its complement graph. A complement graph has the same vertex set as the

original graph, and two vertices are adjacent if they are not in the original graph.

This is a NP-complete problem and hence the runtime increases rapidly as the

number of operators increases. We have seen that to obtain a good bound from com-

plementarity we may need to use the method of duplication of operators in Subsection

(3.3.3), therefore the computational time needed maybe very long even for small sys-

tems. We provided an algorithm in Appendix (F) to solve the clique cover problem.
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Figure 3.4: This graph shows the anticommuting graph for the monogamy of B212 and
B213. Every vertex represents an operator involved in the Bell monogamy. Two vertices
are connect with an edge if they anticommute. The minimum clique cover number is
2 as shown by the two cliques in red and blue.

The greedy algorithm can be used as an approximate solution to the clique cover

problem. The greedy algorithm operates by listing and ranking all the cliques accord-

ing to their number of vertices in each stage and choosing only the clique with the

greatest number of vertices. In this thesis we are only interested in exact solutions,

hence we will not use this algorithm.

We also mentioned the averaging method in (3.3.3). This method can be translated

to the subgraph isomorphism problem.

Construct the hypergraph of the k-partite system as in Section (2.3). Find all

subgraphs isomorphic to the elementary monogamy relations. These subgraphs rep-

resent Bell monogamy relations. After that, find the overall Bell monogamy relation

by averaging these Bell monogamy relations. An example can be found in Section

(4.2).
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We did not provide an algorithm for the method of averaging as subgraph iso-

morphism problem is hard to implement, and the elementary relations are different

for different number of parties. Furthermore, subgraph isomorphism problem is also

NP-complete, and hence the runtime is not significantly improved compared to the

duplication of operators method.
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Chapter 4

Bell Monogamy Relation

Bell monogamy relation was introduced in Chapter (2.3). In this chapter, we will

only look at Bell monogamy relations with quadratic Bell parameters. We will define

two more concepts; tight Bell monogamy relations and elementary Bell monogamy

relations.

Definition 4.0.1. The monogamy relation is called tight if there exist a quantum

state that saturates the bound of the Bell monogamy relation.

Definition 4.0.2. A monogamy relation is called elementary if it cannot be obtained

by averaging from other elementary monogamy relations.

Elementary relations are like prime numbers. Any monogamy relations that cannot

be obtained from the elementary monogamy relations are, themselves, elementary

relations.
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4.1 Bipartite monogamy relation

There is only one elementary monogamy relation for bipartite monogamy. The ele-

mentary monogamy relation is

B212 + B213 ¬ 2. (4.1)

We can use this monogamy relation to obtain the monogamy relations for any

arbitrary bipartite graph. The method presented below is based on the method of

averaging.

1. Construct the bipartite graph G for any arbitrary system where each vertex rep-

resents an observer and two vertices are adjacent if the corresponding observers

are involved in a Bell parameter. Each edge of G represents the Bell parameter

of its vertices.

2. Construct the line graph L(G). The vertices of the line graph v ∈ V (L) are

the edges of G. The vertices of L(G) are adjacent if the corresponding edges

are incident in G. Hence the vertex set V (L) is the set of Bell parameters, and

the edge set E(L) is the set of monogamy relations. The E(L) is equivalent to

identifying all the isomorphic elementary Bell monogamy subgraphs from G.

3. The elementary Bell monogamy relations identified in E(L) are summed up by

∑
v

dvB2v ¬ 2ε, (4.2)

where dv are the degree of the vertices v, and ε = |E(L)| is the cardinality of

the edge set of L.

Equation (4.2) is tight. Since
∑
v dv = 2ε from the handshaking lemma, the bound

can be saturated by assuming that all Bv = 1 which is achievable because it is within
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LHV bound in equation (3.17). Hence this equation is the general monogamy relation

for any bipartite relations. An example of a bipartite line graph is shown in Figure

(4.1).

Figure 4.1: The black dots and black lines are vertices and edges of an arbitrary
bipartite graph G. The red squares and red lines are vertices and edges of its line
graph L(G). The red dots represent the Bell parameter and the red lines represent a
monogamy relation.

4.2 Tripartite monogamy relation

We are able to obtain tight bipartite monogamy relation for any arbitrary bipartite

graphs from the elementary bipartite monogamy relation. It is natural to generalise

this idea to multipartite case. However, the extension to multipartite case is not

trivial. The simplest case to study is, probably, the tripartite case, and for the rest of

the thesis we will look at tripartite monogamy relations.

4.2.1 Elementary tripartite monogamy relations

As in the bipartite case, we try to identify the elementary tripartite monogamy re-

lations. We have found three elementary relations so far using the complementarity

principle:
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Square graph: B2123 + B2234 + B2341 + B2412 ¬ 4, (4.3a)

Pyramid graph: B2123 + B2345 + B2561 + B2135 ¬ 4, (4.3b)

Frankenstein graph: B2123 + B2124 + B2156 + B2157 ¬ 4. (4.3c)

The names of the elementary relations are of various reasons. The square graph is

the first elementary relation found and its tripartite graph looks like a square. The

pyramid graph is the second elementary graph found and the KF representation looks

like a pyramid. KF representation is an alternate representation that we will introduce

later on. The frankenstein graph is the most recent discovery and it was constructed

from the bipartite elementary relation, and hence its name. We will show how to

construct the frankenstein graph later on too.

Another way to represent the tripartite graph is the KF representation (the name

is tentative). This representation is just neater than the original tripartite graph. To

convert a tripartite graph to the KF graph, represent each hyperedge in the tripartite

graph as a triangle and the vertices in the hyperedge as the vertices on the triangle.

The KF graph for the three elementary tripartite monogamy relations are shown in

Figure (4.2).

The pitfall using this representation is that it may erroneously represent Bell

parameters that are not in the monogamy relation. For example, the KF graph for

B2123+B2345+B2561 is the same as the pyramid graph in Figure (4.2b), but the pyramid

graph suggests an additional term B2135.

4.2.2 Examples on interesting tripartite monogamy relations

We can derive many monogamy relations from the elementary monogamy relations

in equation (4.3). We will see some of the interesting examples in this subsection.
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(a) Square graph. (b) Pyramid graph.

(c) Frankenstein graph.

Figure 4.2: KF representations of the three elementary tripartite monogamy relations.

We can obtain simpler monogamy relations from the elementary relations. For

example, we can obtain the bound B2123 + B2234 ¬ 4 by setting B2341 + B2412 = 0 in

equation (4.3a), and B2123+B2345 ¬ 4 by setting B2561+B2135 = 0 in equation (4.3b). We

can obtain other simpler monogamy relations by setting different Bell parameters to

zero in the elementary tripartite monogamy relations.

Similarly, we can obtain composite monogamy relations by mixing different

monogamy relations. For example, we can obtain the bound B2123 + B2345 + B2561 +

B2135 + B2726 + B2246 + B2647 + B2472 ¬ 8 by combining equation (4.3b) and (4.3a). The

first four Bell parameters form the pyramid graph and the last four Bell parameters

form the square graph. The KF graph of this example is in Figure (4.3).

We can use the method of averaging to obtain monogamy relations as well. For

example, we can obtain the bound on B2123+B2234+B2341+B2412+B2125 ¬ 6 (house graph)
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Figure 4.3: The KF graph of the composite of the pyramid graph with the square
graph. The pyramid graph is seen by the black lines and the square graph is seen by
the red lines.

by identifying the subgraphs isomorphic to the elementary monogamy relations (or

their subgraphs). The equations in (4.4) are the isomorphic subgraphs. A KF graph

for the house graph is shown in Figure (4.4).

From square: B2123 + B2234 + B2341 + B2412 ¬ 4

From pyramid: B2125 + B2124 + B2134 ¬ 4

From pyramid: B2125 + B2124 + B2234 ¬ 4

From pyramid: B2125 + B2123 + B2134 ¬ 4

From pyramid: B2125 + B2123 + B2234 ¬ 4

(4.4)

As seen in the example for house graph, the averaging method involves searching

for subgraphs isomorphic to the elementary graphs. This method is NP-complete and

is also hard to implement.

The final example we will look at is the full tripartite graph. A full tripartite

graph with N observers, denoted by K3,N , involves all possible combinations of Bell
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Figure 4.4: The KF graph the house graph. Its original tripartite graph looks like
a house, hence its name. There are many isomorphic elementary subgraphs in this
house graph.

parameters. Since it is a full graph, there are
(
N
3

)
Bell parameters in the monogamy

relation.

Theorem 4.2.1. The Bell monogamy relation of a full tripartite graph, K3,N where

N ­ 4 is
(N3 )∑
j=1

B2j ¬
(
N

3

)
, (4.5)

and is tight.

Proof. We will prove Theorem (4.2.1) by induction.

For N = 4, we see that the full graph is the square graph, and hence equation

(4.5) is satisfied.

Assume that N = k is true for k > 4 such that

(k3)∑
j=1

B2j ¬
(
k

3

)
. (4.6)

A full graph, K3,k+1 has (k + 1) subgraphs of K3,k. As each Bell parameter appears

(k−2) times when summing up all the (k+1) subgraphs, the full graph Bell monogamy
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relation for K3,k+1 is

(k+13 )∑
j=1

B2j ¬
(k + 1)

(
k
3

)
k − 2

=
(
k + 1

3

)
, (4.7)

thereby showing that the monogamy relation holds for N = k + 1.

Since the basis and the inductive step are true, by mathematical induction, The-

orem (4.2.1) holds for N ­ 4.

We can easily see that the monogamy relation for the tripartite full graph is tight

as we can saturate the bound by having Bj = 1.

4.2.3 Frankenstein graph

Frankenstein graph in equation (4.3c) is a constructed elementary monogamy relation

that was discovered by sewing two bipartite monogamy relations together. We will

show how this was done and how this technique can be used to obtain elementary

monogamy relations for higher partite graphs.

We start off by writing the operators for the elementary bipartite Bell monogamy

relation in two anticommuting sets as in equation (4.8),

{T̂110, T̂120, T̂201, T̂202},

{T̂210, T̂220, T̂101, T̂102}.
(4.8)
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We tensor product T̂000 and {σ1, σ2} on the left of all the operators in equation (4.8).

Now we have four sets of anticommuting operators as shown in equation (4.9).

{T̂0001110, T̂0001120, T̂0001201, T̂0001202}, (4.9a)

{T̂0001210, T̂0001220, T̂0001101, T̂0001102}, (4.9b)

{T̂0002110, T̂0002120, T̂0002201, T̂0002202}, (4.9c)

{T̂0002210, T̂0002220, T̂0002101, T̂0002102}. (4.9d)

Now, copying and reflecting the four qubit system in equation (4.9) about the forth

qubit, we obtain

{T̂0111000, T̂0211000, T̂1021000, T̂2021000}, (4.10a)

{T̂0121000, T̂0221000, T̂1011000, T̂2011000}, (4.10b)

{T̂0112000, T̂0212000, T̂1022000, T̂2022000}, (4.10c)

{T̂0122000, T̂0222000, T̂1012000, T̂2012000}. (4.10d)

These eight operators in equation (4.9) and (4.10) can be group into four anti-

commuting sets by taking the union of set (4.9a) and (4.10c), set (4.9b) and (4.10d),

set (4.9c) and (4.10a), and set (4.9d) and (4.10b). This is exactly the operators in

frankenstein graph.

This method can be used to obtain ”frankenstein” elementary monogamy relations

of higher partite systems. We will summarize the steps to obtain the frankensteins

for k-partite system below.

1. Choose any two elementary Bell monogamy relations, E1 and E2, from (k − 1)-

partite system. The number of qubits involved in the monogamy relations are

n1 and n2 respectively.
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2. Group the operators of E1 and E2 into anticommuting sets. The set of anticom-

muting sets are denoted by S1 and S2 respectively, and the number of anticom-

muting sets in each set is denoted by |Sj|

3. Tensor product T̂2 = σ⊗n20 with {σ1, σ2} on the left of E1 and {σ1, σ2} with

T̂1 = σ⊗n10 the right of E2. Hence the number of anticommuting sets in E1 and

E2 are doubled, i.e. |S ′1| = 2|S1| and |S ′2| = 2|S2|.

4. It is now possible to merge S ′1 and S ′2 to form S such that |S| = |S ′j| like how we

merge set (4.9) and (4.10). We have now constructed the k-partite frankenstein

Bell monogamy relation E corresponding to S.

4.2.4 Problems in elementary Bell monogamy relations

Despite the fact that we can use the three elementary tripartite monogamy relations

to obtain other more complicated monogamy relations, these monogamy relations

may not be tight. We will look at a class of monogamy relation, the cycle graph, in

this subsection and discuss on its tightness.

Definition 4.2.1. An M -cycle tripartite graph consists of M hyperedges and 2M

vertices. The hyperedges can be placed around a circle and two hyperedges share a

common vertex if they are beside each other. The Bell monogamy relation for an

M -cycle graph is of the form B2123 + B2345 + B2567 + ...+ B2(2M−1)(2M)1.

A M -cycle tripartite graph has the monogamy relation

M∑
j=1

B2j ¬ 2M. (4.11)
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The bound is saturated for even cycles. The state with alternating GHZ states and

eigenstates of the σ1 will do the job,

|ψ〉 = |GHZ〉123 ⊗
|0〉4 ± |1〉4√

2
⊗ |GHZ〉567 ⊗

|0〉8 ± |1〉8√
2

⊗

...⊗ |GHZ〉(2M−3)(2M−2)(2M−1) ⊗
|0〉2M ± |1〉2M√

2
.

(4.12)

No conclusion on the tightness of the monogamy relations for odd cycles with

M > 3 can be made so far; we have found no state that saturates the bound, nor do

we have a proof that the bound is not tight. We conjecture that such a state does not

exist and hence the bound is not tight. As such, if our conjecture is true, all odd cycle

tripartite monogamy relations must be added to the set of elementary monogamy

relations.

We have clues on the properties of the quantum state if it saturates the bound.

Property 1. There exist a pure state that saturates the bound.

Property 2. All the square of the Bell parameters must equal to 2, i.e. B2j = 2.

Property 3. There exist a pure state for the subsystem {B123,B345,B567} such that

the square of each Bell parameter equals 2.

We will look at the 5-cycle graph as an example to prove the three properties.

Generalising it to M -cycle is a simple extension.
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Property 1. can be proven as follows. Consider a general state ρ =
∑
k pk |φ〉k 〈φ|k.

The monogamy relation is calculated as

B2 = 10 (4.13a)

=
∑
j

[
tr(T̂jρ)

]2
(4.13b)

=
∑
j

[
tr(T̂j

∑
k

pk |φ〉k 〈φ|k)
]2

(4.13c)

=
∑
j

[∑
k

pkTj(φk)
]2

(4.13d)

¬
∑
j

∑
k

pkT
2
j (φk) (4.13e)

¬ 10. (4.13f)

The step from (4.13d) to (4.13e) is due to CauchySchwarz inequality where we

let ~u1 = (
√
p1Tj(φ1), ...,

√
pkTj(φk), ...) and ~u2 = (

√
p1, ...,

√
pk, ...) and (~u1.~u2)2 =

[
∑
k pkTj(φk)]

2 ¬ |~u1|2|~u2|2 =
∑
k pkT

2
j (φk). The equation (4.13) is equality if and only

if
∑
j T
2
j (φk) = 10, and this completes the proof.

Property 2. can be easily seen when we write down all the isomorphic monogamy

relations of the 5-cycle graph,

B2123 + B2345 = 4, (4.14a)

B2345 + B2567 = 4, (4.14b)

B2567 + B2789 = 4, (4.14c)

B2789 + B29 10 1 = 4, (4.14d)

B29 10 1 + B2123 = 4. (4.14e)

If B2123 > 2, then B2345 < 2, B2567 > 2, B2789 < 2, B29 10 1 > 2, and finally B123 < 2 which

leads to a contradiction. Hence all Bell parameters must be equal to 2.
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Property 3. is a corollary of Property 1. and Property 2.. We start with a pure state

that saturates the bound and trace out qubit 8, 9 and 10. The reduce density matrix

of the subsystem must saturate the bound for the monogamy B2123+ 2B2345+B2567 = 8.

The proof for Property 1. can hence be used to show that there exist a pure state

that saturates the bound for the monogamy of the subsystem.

After all the effort, we have reduced the problem to finding a pure state that satisfy

Property 3.. If Property 3. is shown to be not true, and no such state exist, then it

implies that all odd cycle graphs cannot be obtained from elementary monogamy

relations (at least from complementarity principle alone) and must be added to the

elementary set.
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Chapter 5

Conclusion

In this project, we have explored some principles and methods to obtain Bell

monogamy relations.

From the no-signalling principle, we formulated a new method within graph theory

to obtain any arbitrary multipartite monogamy relations. This is in contrast with

the method used in the paper [21] where it is only suitable for bipartite monogamy

relations.

We provided an alternative proof for the method to obtain the Bell monogamy re-

lation from complementarity principle. This alternative proof also contains a stronger

relation than the one in complementarity principle.

Using the complementarity principle, it was shown that arranging the operators

into anticommuting sets is equivalent to the clique cover problem. We have provided

a simple algorithm to solve this problem.

We also show two methods that refine the bound, duplication of operators and

averaging method. These two methods are shown to be equivalent, and the averaging

method is equivalent to the subgraph isomorphism problem.
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Three elementary tripartite monogamy relations are also discovered, one of which

is the frankenstein graph. The method for building a frankenstein graph is provided

for higher partite case.

Lastly, we conjecture that all odd cycle tripartite graphs must be added into the

elementary set. We also show a possible simplification of the problem that may prove

the conjecture.
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Appendix A

EPR Paradox

Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) published their paper in

1935 to show that quantum mechanics is an incomplete theory[1].

A complete theory, according to the EPR paper, is such that ”every element of

physical reality must have a counterpart in the physical theory.” A physical reality

is defined to be ”if, without in any way disturbing a system, we can predict with

certainty (i.e. with probability equal to unity) the value of a physical quantity, then

there exists an element of physical reality corresponding to this physical quantity.”

There are two more assumptions that are not explicitly stated in the EPR paper,

as suggested by David Bohm [24]. The assumptions are ”the world can correctly be

analysed in terms of distinct and separately existing elements of reality” and ”every

one of these elements must be a counterpart of a precisely defined mathematical

quantity appearing in a complete theory.” Underlying these definitions is the concept

of local realism. Realism is the idea that measurement outcomes of the elements of

reality are predetermined, and locality is the idea that elements of reality cannot

influence each other if they are spacelike separated.

Due to the existence of entangled states and non-commuting observables, quantum

mechanics was deemed incomplete according to EPR definitions. It was demonstrated
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in the paper by considering the measurement of the position and momentum of a

pair of entangled particles. In this thesis, we will present the version given by David

Bohm[24] which considered the spin of a pair of entangled particles.

Bohm looked at a molecule containing two half-spin atoms in a state which total

spin is zero; the spin of each atom is pointing in the opposite direction to each other.

By some mechanism the molecule disintegrates into the two constituent atoms and

they move away in opposite direction until there are no more interactions between

them. As the total spin-angular momentum is conserved, the spin of the atoms are

correlated.

Suppose that the spin of one the atom is measured in a certain direction, immedi-

ately the spin of the other atom in the same direction is determined unambiguously.

This can be represented by the singlet state:

|ψ〉 =
1√
2

(|↑↓〉 − |↓↑〉) , (A.1)

where {|↑〉 , |↓〉} are eigenstates of arbitrary spin direction. Such correlation implies

that either the two atoms have their spins encoded in some hidden variable and the

spin of the atoms in every direction is a physical reality, or there is some instantaneous

interaction between the two atoms such that their spins are always opposite when

measured which violated locality.

However, in quantum mechanics, there is a basic uncertainty relation between

different spin directions and it is impossible to measure to any arbitrary precision

two different non-commuting spin directions. Therefore, there is no physical reality

when measuring non-commuting observables and we reach a paradox. Either locality

or reality is violated (or both). Hence EPR concluded that quantum mechanics is

incomplete.
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For example, let us assume that only one atom, atom A, is measured and the

other atom, atom B, is left untouched. We will measure atom A in the z and x-

direction, represented by the Pauli matrices σz and σx and the eigenstates {|0〉 , |1〉}

and {|+〉 , |−〉} respectively. From Equation (A.1) when the spin of atom A in the

z-direction is measured to be |sz〉A = |0〉, then the state of atom B immediately

collapses to |sz〉B = |1〉, vice versa. Without disturbing atom B we determined its

spin in the z-direction, hence there corresponds an element physical reality of the

spin in the z-direction for atom B. Instead, if we measured the spin of atom A in the

x-direction and found it to be |sx〉A = |+〉, immediately the state of atom B collapses

to |sx〉B = |−〉, vice versa. Again, without disturbing atom B we determined its spin

in the x-direction, hence there corresponds an element physical reality of the spin

in the x-direction for atom B. However, quantum mechanics forbid us from knowing

the spin of z and x-direction (incompatible observables) of atom B to any arbitrary

precision due to the uncertainty principle. This is the paradox.

To sum up the paradox, the EPR argument shows that quantum mechanics does

not obey local realism. The absence of local realism was paradoxical as all classical

theories, including relativity, have it as their core principle. This made quantum

mechanics seems incomplete.
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Appendix B

Quantum Contextuality

Quantum measurements depend on the context of the measuring apparatus. One

would reach a logical contradiction if one insists on having predetermined measure-

ment results. This dependence is called quantum contextuality. This fundamental

principle can also be used to obtain monogamy relations by constructing the exclu-

sivity graphs and calculate its Lovász number[25]. Refer to [25] for more information

on the exclusivity graph and the graph theoretic approach to finding the bound on

the Bell parameter. In this chapter we will present an elegant proof of quantum con-

textuality as in [26].

Consider five non-contextual boxes as in Figure (B.1). There are certain conditions

of finding a ball in the box for each pair of boxes. Given these conditions, one may

logically deduce the joint probability distribution of finding a ball for unrelated boxes.

This is the main feature of non-contextual boxes; there exists a joint probability

distribution of finding a ball for all the boxes.

Study the conditions below:

1. When box 2 has a ball then box 1 is empty, and when box 2 is empty then box

3 has a ball.
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2. When box 4 has a ball then box 3 is empty, and when box 4 is empty then box

5 has a ball.

These conditions can be translated to probabilities as in equation (B.1).

p(0, 1|1, 2) + p(0, 1|2, 3) = 1, (B.1a)

p(0, 1|3, 4) + p(0, 1|4, 5) = 1, (B.1b)

p(1, 1|1, 2) =p(0, 0|2, 3) = p(1, 1, |3, 4) = p(0, 0|4, 5) = 0, (B.1c)

where p(a, b|A,B) is the probability of box A being in state a and box B being in

state b, and a, b = {0, 1} where 0 means empty and 1 means has a ball.

Figure B.1: The figure shows five noncontextual boxes. The dotted lines represent
that either one of the two connected boxes has a ball, as in condition (B.1). This
would imply that box 1, 3 and 5 all either have balls or are empty. Box 2 and 4 are
related by the same manner.

With all these conditions, within non-contextual and local theories, it is obvious

that p(0, 1|5, 1) = 0. However, it is possible to construct a quantum state and a set

of quantum measurements such that the quantum state obeys condition (B.1) but

p(0, 1|5, 1) 6= 0.
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Consider the state

|η〉 =
1√
3

(1, 1, 1). (B.2)

Also consider the measurements as measuring the projector on the state |vj〉 given

by

|v1〉 =
1√
3

(1,−1, 1), (B.3a)

|v2〉 =
1√
2

(1, 1, 0), (B.3b)

|v3〉 = (0, 0, 1), (B.3c)

|v4〉 = (1, 0, 0), (B.3d)

|v5〉 =
1√
2

(0, 1, 1). (B.3e)

Note that these boxes are compatible with its neighbours as shown by the orthogonal

projectors. This condition is needed so that the joint probability p(a, b|A,B) exists.

With simple calculations, it can be shown that conditions in (B.1) hold while

p(0, 1|5, 1) = 1
9 6= 0. This shows that quantum measurements depend on the context

of the measuring apparatus.
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Appendix C

Bell-CHSH inequality and its

bounds

The correlation function is define to be

E(A,B) ≡
∑
a,b

ab p(a, b|A,B) = 〈ab〉 , (C.1)

where A and B are the measurement settings, a and b are the measurement outcomes,

and p(a, b|A,B) is the conditional joint probability of Alice and Bob obtaining out-

comes a and b given that the settings are A and B respectively. 〈...〉 denotes the

expectation value of the quantity inside, hence having the same definition as the term

in the middle.

Assume that there is some local hidden mechanism that determines the spin of

the atom. Hence the measurement outcomes can be written as

a = a(A, λ), (C.2)

b = b(B, λ), (C.3)
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where λ is the local hidden variable used to quantify the local hidden mechanism.

Here, λ can be a variable or a set, it does not matter. Since the outcome of Alice is

independent of Bob’s setting and vice versa(assumption of free will and locality), we

can write the conditional joint probability in equation (C.1) as[27]

p(a, b|A,B) =
∑
λ

p(a|A, λ)p(b|B, λ)p(λ), (C.4)

where p(λ) is the probability of the atoms to be in the state λ and
∑
λ p(λ) = 1.

Combining equation (C.4) with equation (C.1), the correlation function becomes

E(A,B) =
∑
λ

p(λ)ā(A, λ)b̄(B, λ), (C.5)

where ā =
∑
a a p(a|A, λ) and b̄ =

∑
b b p(b|B, λ). Since the possible values of a and b

are ±1, then

|ā|, |b̄| ¬ 1. (C.6)

Consider the following equation,

E(A1, B1)− E(A1, B2) =
∑
λ

p(λ)[ā1b̄1 − ā1b̄2]

=
∑
λ

p(λ)ā1b̄1[1± ā2b̄2]−
∑
λ

p(λ)ā1b̄2[1± ā2b̄1].
(C.7)

Applying the triangle inequality to equation (C.7), and together with equation (C.6)

and the fact that
∑
λ p(λ) = 1,

|E(A1, B1)− E(A1, B2)| ¬
∣∣∣∣∣∑
λ

p(λ)ā1b̄1[1± ā2b̄2]
∣∣∣∣∣+

∣∣∣∣∣∑
λ

p(λ)ā1b̄2[1± ā2b̄1]
∣∣∣∣∣

¬
∑
λ

p(λ)[1± ā2b̄2] +
∑
λ

p(λ)[1± ā2b̄1]

= 2± [E(A2, B1) + E(A2, B2)],

(C.8)
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which contains the original CHSH inequality.

Quantum mechanics allows us to violate equation (C.8). Let us consider the fol-

lowing scheme,

|ψ〉 =
1√
2

(|01〉 − |10〉),

a1 = σz ⊗ I,

a2 = σx ⊗ I,

b1 = −I ⊗ σz + σx√
2

,

b2 = I ⊗ σz − σx√
2

.

Calculating equation (C.8),

E(A1, B1)− E(A1, B2) + E(A2, B1) + E(A2, B2) = 〈a1b1〉 − 〈a1b2〉+ 〈a2b1〉+ 〈a2b2〉

= 2
√

2.

(C.9)

Hence quantum mechanics violates the local realistic bound up to 2
√

2.

A PR box is a no-signalling black box that exhibits more nonlocal correlations

than quantum mechanics[16]. The rest of this chapter is dedicated to showing how

PR box works.

For simplicity, we will relabel the measurement setting to run from 0 to 1 (only

in this part). The correlations from PR box obey |a+b|
2 = AB. We list down the

correlations for all the settings in Table (C.1).

53



Table C.1: The correlations for all possible measurement settings. We can clearly see
that the correlations obey no-signalling condition.

A B a b

0 0
-1 1
1 -1

1 0
-1 1
1 -1

0 1
-1 1
1 -1

1 1
-1 -1
1 1

Hence it is possible to calculate the terms in the Bell-CHSH inequality:

E(A1, B1) = −1,

E(A2, B1) = −1,

E(A1, B2) = −1,

E(A2, B2) = 1.

Hence the Bell-CHSH parameter for the PR box is

|E(A1, B1) + E(A2, B1) + E(A1, B2)− E(A2, B2)| = 4, (C.10)

which violates the Tsirelson bound. The PR box hence shows more nonlocal correla-

tions that quantum mechanics but still obeying the no-signalling principle.
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Appendix D

Fine’s Theorem

A. Fine published an important result in his paper [14]. This result shows that an

LHV model must admit a joint probability distribution for all possible measurements,

and vice versa.

Theorem D.1. An LHV model exist if and only if there exist a joint probability

distribution for the outcomes of all possible measurement settings.

This joint probability must return the correct marginals for all possible physical

set-ups,

p(aj, bk|Aj, Bk) =
∑

ax|x6=j,by |y 6=k
p(a1, a2, b1, b2). (D.1)

Proof. If a system have a LHV model, then it must necessarily have

a = a(A, λ), (D.2a)

b = b(B, λ), (D.2b)

and

p(a, b|A,B) =
∑
λ

p(λ)p(a|A, λ)p(b|B, λ). (D.3)

55



A joint probability distribution can be constructed as in equation (D.4),

p(a1, a2, b1, b2) =
∑
λ

p(λ)p(a1|A1, λ)p(a2|A2, λ)p(b1|B1, λ)p(b2|B2, λ), (D.4)

where it returns all the needed marginal probabilities

p(aj, bk|Aj, Bk) =
∑

ax|x 6=j,by |y 6=k

∑
λ

p(λ)p(a1|A1, λ)p(a2|A2, λ)p(b1|B1, λ)p(b2|B2, λ)

=
∑
λ

p(λ)p(aj|Aj, λ)p(bk|Bk, λ).

This completes the first part of the proof.

If a system has a joint probability for all its measurements, then it is possible to

construct a LHV model for it.

Define the hidden variable to be the set of all possible measurement outcomes,

λ = (a1, a2, b1, b2). Then define the following probability distributions,

p(aj|Aj, λ) = δaj ,aj,λ , (D.5a)

p(bk|Bk, λ) = δbk,bk,λ , (D.5b)

p(λ) = p(a1, a2, b1, b2). (D.5c)

By defining the probability distribution in (D.5), it is possible to define a LHV model

with the marginal probability below,

p(aj, bk|Aj, Bk) =
∑

ax|x 6=j,by |y 6=k
p(a1, a2, b1, b2)

=
∑
λ

p(λ)p(aj|Aj, λ)p(bk|Bk, λ).
(D.6)

This completes the proof.
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Appendix E

General Bell’s Inequality for

N-qubits

In the paper [22] a general Bell’s inequality was obtained. The general Bell’s inequality

is a sufficient and necessary condition for the correlation functions for a system of

N -qubits measured from two possible settings for each qubit to be described by a

local realistic model. We will present the derivation of the general Bell’s inequality as

in the paper.

Assuming that there are N observers trying to violate a single Bell’s inequality.

Each of the observers, say observer j, can choose two settings { ~n1, ~n2}, and there are

only two possible measurement outcomes for each setting aj = +1 or aj = −1.

The correlation function for the N observers, as in equation (C.1), can be written

as the expectation value of the product of their measurement outcomes given their

respective settings,

E(~k) =
〈

N∏
j=1

aj(~nkj)
〉
avg

, (E.1)

where kj = 1, 2 is the measurement setting number and ~k is the shorthand for

(k1, ..., kN).
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It was shown that the following algebraic identity holds for pre-determined results:

∑
~s=±1

S(~s)
N∏
j=1

[aj(~n1) + sjaj(~n2)] = ±2N , (E.2)

where sj = ±1, ~s is the shorthand for (s1, ..., sN), and S(~s) is any arbitrary function of

~s such that its values are only ±1. The proof for equation (E.2) can be seen that since

aj(~n1), aj(~n2) = ±1, at least one product
∏N
j=1[aj(~n1) + sjaj(~n2)] =

∏N
j=1±2 = ±2N

by setting sj = aj(~n1)
aj(~n2)

. However, the product does not vanish for only this combination

of ~s because the product will have at least one zero term for any other combinations,

and this completes the proof.

Averaging the experiment over many runs, equation (E.2) becomes

∣∣∣∣∣∣∣
∑
~s=±1

S(~s)
∑
~k=1,2

sk1−11 ...skN−1N E(~k)

∣∣∣∣∣∣∣ ¬ 2N . (E.3)

Since there are 22
N

different functions of S(~s), this equation represents 22
N

different

Bell’s inequalities.

For example, for N = 2, the CHSH inequality can be obtained by setting

S(s1, s2) = +1 except for when S(+1,−1) = −1:

∑
s1,s2=±1

S(s1, s2)
∑

k1,k2=1,2

sk1−11 sk2−12 E(k1, k2)

=E(1, 1) + E(2, 1) + E(1, 2) + E(2, 2)

+ E(1, 1)− E(2, 1) + E(1, 2)− E(2, 2)

− [E(1, 1) + E(2, 1)− E(1, 2)− E(2, 2)]

+ E(1, 1)− E(2, 1)− E(1, 2) + E(2, 2)

=2[E(1, 1)− E(2, 1) + E(1, 2) + E(2, 2)],

|E(1, 1)− E(2, 1) + E(1, 2) + E(2, 2)| ¬ 22

2
= 2.
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where the last equation is the CHSH inequality as in equation (C.9).

Equation E.4 is equivalent to

∑
~s=±1

∣∣∣∣∣∣∣
∑
~k=1,2

sk1−11 ...skN−1N E(~k)

∣∣∣∣∣∣∣ ¬ 2N . (E.4)

The equivalence can be seen by recognising that for any real number rj, all possible

combinations of
∣∣∣∑j ±rj

∣∣∣ ¬ c hold if and only if
∑
j |rj| ¬ c holds. Hence equation

(E.4) is known as the general Bell’s inequality.

Thus far only the necessary condition has been shown for local realistic model im-

plying the general Bell’s inequality. The converse is also true. The sufficient condition

was shown to be true by constructing a local realistic model given that the general

Bell’s inequality holds.

Constructing the hidden probability for the condition sj = aj(~n1)
aj(~n2)

,

p(~s) =
1

2N

∣∣∣∣∣∣∣
∑
~k=1,2

sk1−11 ...skN−1N E(~k)

∣∣∣∣∣∣∣ . (E.5)

One can demand that
∏N
j=1 aj(~n1) has the same sign as the expression in the modulus

of equation (E.5). It can be shown that the correlation function (ELHV ) calculated

from the marginal of
∏N
j=1 aj(~nkj) over all possible ~s reduces back to the one obtained

in the experiment, i.e.

ELHV (~k) =
∑
~s=±1

p(~s)
N∏
j=1

aj(~nkj) = E(~k). (E.6)
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For example, in the case of N = 3 and ~k = (1, 2, 1),

ELHV (1, 2, 1) =
∑

s1,s2,s3=±1
p(s1, s2, s3)

N∏
j=1

aj(~nkj)

=
∑

s1,s2,s3=±1

1
23

∣∣∣∣∣∣
∑

k1,k2,k3=1,2

sk1−11 sk2−12 sk3−13 E(k1, k2, k3)

∣∣∣∣∣∣ a1(~n1)a2(~n2)a3(~n1)
=

∑
s1,s2,s3=±1

1
8

∣∣∣∣∣∣
∑

k1,k2,k3=1,2

sk1−11 sk2−12 sk3−13 E(k1, k2, k3)

∣∣∣∣∣∣ a1(~n1)a2(~n1)s2
a3(~n1)

=
∑

s1,s2,s3=±1

1
8

∑
k1,k2,k3=1,2

sk1−11 sk2−22 sk3−13 E(k1, k2, k3)

=
∑

s1,s2,s3=±1

1
8

[8E(1, 2, 1)]

= E(1, 2, 1).

In the case where the general Bell’s inequality is not saturated and the sum of all

the hidden probabilities is not unity, we can assign those ”missing” probabilities to

local realistic noise such that it does not affect the correlation function calculated.

This ends the proof for the sufficiency condition. Hence it was proven that a local

realistic model exist if and only if the general Bell’s inequality in equation (E.4) holds.

The paper went on to show the condition for any arbitrary quantum state (pure

or mixed) to satisfy equation (E.4).

An arbitrary quantum state of N -qubits can be represented as

ρ =
1

2N

3∑
µ1,...,µN=0

Tµ1...µNσ
1
µ1
⊗ ...⊗ σNµN , (E.7)

where σj0 is the identity operator and σjxj are the Pauli operators for the three orthogo-

nal directions xj = 1, 2, 3 in the Hilbert space of the jth qubit. The set of components

Tµ1...µN = tr(ρ.(σ1µ1⊗ ...⊗σ
N
µN

)) corresponding to the three orthogonal Pauli operators

forms the correlation tensor, T̂ .
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Hence the correlation function corresponding to a N -qubit system is

EQM(~k) = tr[ρ.(~nk1 .~σ ⊗ ...⊗ ~nkN .~σ)]

=
3∑

x1,...,xN=1

Tx1...xN (~nk1)x1 ...(~nkN )xN ,
(E.8)

where (~nkj)xj are the Cartesian components of the vector ~nkj . This can be written in

a more compact way as 〈T̂ , ~nk1 ⊗ ...~nkN 〉 where 〈..., ...〉 denotes the scalar product in

R3N .

Putting correlation function for N -qubits system in equation (E.8) into the general

Bell’s inequality in equation (E.4), one obtain the condition for an arbitrary quantum

state to have a local realistic model:

∑
~s=±1

∣∣∣∣∣∣
〈
T̂ ,

2∑
k1=1

sk1−11 ~nk1 ⊗ ...⊗
2∑

kN=1

skN−1N ~nkN

〉∣∣∣∣∣∣ ¬ 2N . (E.9)

For any pair of arbitrary unit vectors in R3, {~n1, ~n2}, the following properties

hold:
∑2
kj=1 ~nkj = 2cj1~v

j
1 and

∑2
kj=1(−1)kj−1~nkj = 2cj2~v

j
2 where (cj1)2 + (cj2)2 = 1 and

~vj1.~v
j
2 = 0. Hence equation (E.9) can be simplified to

2∑
x1,...,xN=1

∣∣∣c1x1 ...cNxN 〈T̂ , ~v1x1 ⊗ ...⊗ ~vNxN〉∣∣∣ ¬ 1. (E.10)

Equation (E.10) remains true for any local measurement settings of the N -qubits,

hence we can write it as

2∑
x1,...,xN=1

c1x1 ...c
N
xN
|Tx1...xN | ¬ 1, (E.11)

where Tx1...xN is a component of the correlation tensor in the new local coordinate

system with {~vj1, ~v
j
2} among the new basic vectors. The two new basic vectors serve

as unit vectors for, say, the local directions x and y. Therefore, the general Bell’s
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inequality in equation (E.4) holds for an arbitrary quantum state of N -qubits if and

only if equation (E.11) holds for any arbitrary set of local coordinate systems and

any set of unit vectors ~cj = (cj1, c
j
2).

The condition (E.11) is often hard to compute as it involves maximizing the cor-

relation tensor over all local coordinates of the N observers to obtain the ”largest

plane” followed by a rotation in this plane. Applying the CauchySchwarz inequality

to the inequality (E.11), a weaker condition is obtained:

2∑
x1,...,xN=1

T 2x1...xN ¬ 1. (E.12)

If condition (E.12) holds for any local coordinate systems, then it would imply that

the general Bell’s inequality (E.4) holds.
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Appendix F

Clique cover problem (MATLAB

code)

File name: kf complementarity.m

Description: Main function to calculate the bound from complementarity principle.

Author: Ng Kang Feng

function [min_clique_cover_number] = kf_complementarity(bell_particle_pos,

element_no, permutation_no)

% This function calculates the bound from complementarity principle.

%

% Input:

% bell_particle_pos takes in cells of the position of the observers.

% For example, the square graph is {[1 2 3],[2 3 4],[3 4 1], [4 1 2]}

% element_no is the number of observers. The square graph has 4 observers.

% permutation_no is the number of orthogonal coordinates in the Bell

% parameters. It is usually equals to 2.

%

% Output:
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% min_clique_cover_number outputs the bound from complementarity.

%We build the operators.

T = [];

for i = 1:length(bell_particle_pos)

T = [T;kf_correlation_tensor(bell_particle_pos{i}, element_no,

permutation_no)];

end

%Calculate the bound from complementary.

%Prelimary--Create the anticommuting graph.

G = kf_commute_anticommute(T, permutation_no);

%Find the minimum clique cover by converting G to its complement Gbar.

%The steps below are to obtain the edge set of the complement graph E, and

%input the edge set into the ready written algorithm for finding the

%chromatic number.

[m,~] = size(G);

Gbar = G - tril(ones(m,m),-1);

[row,col] = find(Gbar == -1);

E = [row,col];

min_clique_cover_number = max(grColVerOld(E));

File name: kf correlation tensor.m

Description: A function to create the correlation tensors.

Author: Ng Kang Feng
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function output = kf_correlation_tensor(bell_particle_pos, element_no,

permutation_no)

% This function creates the needed correlation tensors.

%

% Input:

% bell_particle_pos takes in cells of the position of the observers.

% For example, the square graph is {[1 2 3],[2 3 4],[3 4 1], [4 1 2]}

% element_no is the number of observers. The square graph has 4 observers.

% permutation_no is the number of orthogonal coordinates in the Bell

% parameters. It is usually equals to 2.

%

% Output:

% Returns all the correlation tensors of the bell_particle_pos input.

m = length(bell_particle_pos);

vec = zeros(permutation_no^m, element_no);

combinations = combn(1:permutation_no,m);

vec(:,bell_particle_pos) = combinations;

output = vec;

end

File name: kf commute anticommute.m

Description: A function to create anticommuting graph.

Author: Ng Kang Feng

function output_graph = kf_commute_anticommute(T, permutation_no)

% This function creates the anticommuting graph.

%
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% Input:

% T is the array of the operator.

% permutation_no is the number of orthogonal coordinates in the Bell

% parameters. It is usually equals to 2.

%

% Output:

% output_graph is the anticommuting graph.

[m,n] = size(T);

G = zeros(m,m);

C = nchoosek(1:permutation_no,2);

C = C(:,1).*C(:,2);

for i = 1:m

for j = i:m

v = T(i,:).*T(j,:);

counter = 0;

for l = 1:nchoosek(permutation_no,2)

counter = counter + sum(v == C(l));

end

if mod(counter,2) == 1

G(i,j) = 1;

end

end

output_graph = G + G’;

end

File name: combn.m
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Description: A function to create all combinations of a certain set.

Author: Jos (10584)

URL: http://www.mathworks.com/matlabcentral/fileexchange/7147-combn--

4-3-/content//combn.m

function [M,IND] = combn(V,N)

% COMBN - all combinations of elements

% M = COMBN(V,N) returns all combinations of N elements of the elements

in

% vector V. M has the size (length(V).^N)-by-N.

%

% [M,I] = COMBN(V,N) also returns the index matrix I so that M = V(I).

%

% V can be an array of numbers, cells or strings.

%

% Example:

% M = COMBN([0 1],3) returns the 8-by-3 matrix:

% 0 0 0

% 0 0 1

% 0 1 0

% 0 1 1

% ...

% 1 1 1

%

% All elements in V are regarded as unique, so M = COMBN([2 2],3) returns

% a 8-by-3 matrix with all elements equal to 2.

%

% NB Matrix sizes increases exponentially at rate (n^N)*N. For larger

% values of n and N, one could loop over the output of COMBNSUB
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% retrieving one or more rows of the output at a single time.

%

% See also PERMS, NCHOOSEK

% and COMBNSUB, ALLCOMB, and PERMPOS on the File Exchange

% tested in Matlab R13, R14, 2010b

% version 4.3 (apr 2013)

% (c) Jos van der Geest

% email: jos@jasen.nl

% History

% 1.1 updated help text

% 2.0 new faster algorithm

% 3.0 (aug 2006) implemented very fast algorithm

% 3.1 (may 2007) Improved algorithm Roger Stafford pointed out that for

some values, the floor

% operation on floating points, according to the IEEE 754 standard, could

return

% erroneous values. His excellent solution was to add (1/2) to the values

% of A.

% 3.2 (may 2007) changed help and error messages slightly

% 4.0 (may 2008) again a faster implementation, based on ALLCOMB, suggested

on the

% newsgroup comp.soft-sys.matlab on May 7th 2008 by "Helper". It was

% pointed out that COMBN(V,N) equals ALLCOMB(V,V,V...) (V repeated N

% times), ALLCMOB being faster. Actually version 4 is an improvement

% over version 1 ...

% 4.1 (jan 2010) removed call to FLIPLR, using refered indexing N:-1:1

% (is faster, suggestion of Jan Simon, jan 2010), removed REPMAT, and
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% let NDGRID handle this

% 4.2 (apr 2011) corrrectly return a column vector for N = 1 (error pointed

% out by Wilson).

% 4.3 (apr 2013) make a reference to COMBNSUB

error(nargchk(2,2,nargin)) ;

if isempty(V) || N == 0,

M = [] ;

IND = [] ;

elseif fix(N) ~= N || N < 1 || numel(N) ~= 1 ;

error(’combn:negativeN’,’Second argument should be a positive integer’) ;

elseif N==1,

% return column vectors

M = V(:) ;

IND = (1:numel(V)).’ ;

else

% speed depends on the number of output arguments

if nargout<2,

M = local_allcomb(V,N) ;

else

% indices requested

IND = local_allcomb(1:numel(V),N) ;

M = V(IND) ;

end

end

% LOCAL FUNCTIONS
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function Y = local_allcomb(X,N)

% See ALLCOMB, available on the File Exchange

if N>1

% create a list of all possible combinations of N elements

[Y{N:-1:1}] = ndgrid(X) ;

% concatenate into one matrix, reshape into 2D and flip columns

Y = reshape(cat(N+1,Y{:}),[],N) ;

else

% no combinations have to be made

Y = X(:) ;

end

% =========================================================================

% Previous algorithms

% Version 3.2

% % COMBN is very fast using a single matrix multiplication, without any

% explicit for-loops.

% nV = numel(V) ;

% % use a math trick

% A = [0:nV^N-1]+(1/2) ;

% B = [nV.^(1-N:0)] ;

% IND = rem(floor((A(:) * B(:)’)),nV) + 1 ;

% M = V(IND) ;

% Version 2.0

% for i = N:-1:1

% X = repmat(1:nV,nV^(N-i),nV^(i-1));
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% IND(:,i) = X(:);

% end

% M = V(IND) ;

% Version 1.0

% nV = numel(V) ;

% % don waste space, if only one output is requested

% [IND{1:N}] = ndgrid(1:nV) ;

% IND = fliplr(reshape(cat(ndims(IND{1}),IND{:}),[],N)) ;

% M = V(IND) ;

% Combinations using for-loops

% can be implemented in C or VB

% nv = length(V) ;

% C = zeros(nv^N,N) ; % declaration

% for ii=1:N,

% cc = 1 ;

% for jj=1:(nv^(ii-1)),

% for kk=1:nv,

% for mm=1:(nv^(N-ii)),

% C(cc,ii) = V(kk) ;

% cc = cc + 1 ;

% end

% end

% end

% end
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File name: grColVerOld.m

Description: A function to find the chromatic number of a graph.

Author: Sergii Iglin

URL: http://www.mathworks.com/matlabcentral/fileexchange/4266-grtheory-

graph-theory-toolbox/content//grColVerOld.m

function nCol=grColVerOld(E)

% function nCol=grColVer(E) solve the color graph problem

% for vertexes of the graph.

% Input parameter:

% E(m,2) - the edges of graph;

% 1st and 2nd elements of each row is numbers of vertexes;

% m - number of edges.

% Output parameter:

% nCol(n,1) - the list of the colors of vertexes.

% Uses the sequential deleting of the maximal stable sets.

% Required the Optimization Toolbox v.3.0.1 or over.

% Author: Sergii Iglin

% e-mail: siglin@yandex.ru

% personal page: http://iglin.exponenta.ru

% ============= Input data validation ==================

if nargin<1,

error(’There are no input data!’)

end

[m,n,E] = grValidation(E); % E data validation

E=sort(E(:,1:2)’)’; % each row in ascending order

E=unique(E,’rows’); % we delete multiple edges

72

http://www.mathworks.com/matlabcentral/fileexchange/4266-grtheory-graph-theory-toolbox/content//grColVerOld.m
http://www.mathworks.com/matlabcentral/fileexchange/4266-grtheory-graph-theory-toolbox/content//grColVerOld.m


E=E(setdiff([1:size(E,1)]’,find((E(:,1)==E(:,2)))),:); % we delete loops

nCol=zeros(n,1); % initial value

% ============= Main cycle with MaxStabSet deleting ====

while any(nCol==0),

nv=find(nCol==0); % uncolored vertexes

E1=E(find(ismember(E(:,1),nv)&ismember(E(:,2),nv)),:); % it’s edges

if isempty(E1),

nCol(find(nCol==0))=max(nCol)+1; % the last color

break;

end

nvs=unique(E1(:)); % all vertexes

for kk=1:length(nvs),

E1(find(E1==nvs(kk)))=kk;

end

nMS=grMaxStabSet(E1); % the maximal stable set

nCol(nvs(nMS))=max(nCol)+1; % the next color

end

return

File name: grMaxStabSet.m

Description: A function used in grColVerOld.m.

Author: Sergii Iglin

URL: http://www.mathworks.com/matlabcentral/fileexchange/4266-grtheory-

graph-theory-toolbox/content//grMaxStabSet.m

function nMS=grMaxStabSet(E,d)

% Function nMS=grMaxStabSet(E,d) solve the maximal stable set problem.

% Input parameters:

% E(m,2) - the edges of graph;
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% 1st and 2nd elements of each row is numbers of vertexes;

% m - number of edges.

% d(n) (optional) - the weights of vertexes,

% n - number of vertexes.

% If we have only 1st parameter E, then all d=1.

% Output parameter:

% nMS - the list of the numbers of vertexes included

% in the maximal (weighted) stable set.

% Uses the reduction to integer LP-problem.

% Required the Optimization Toolbox v.3.0.1 or over.

% Author: Sergii Iglin

% e-mail: siglin@yandex.ru

% personal page: http://iglin.exponenta.ru

% ============= Input data validation ==================

if nargin<1,

error(’There are no input data!’)

end

[m,n,E] = grValidation(E); % E data validation

if nargin<2, % we may only 1st parameter

d=ones(n,1); % all weights =1

else

d=d(:); % reshape to vector-column

if length(d)<n, % the poor length

error(’The length of the vector d is poor!’)

else

n=length(d); % Number of Vertexes

end

end
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% ============= Parameters of integer LP problem ==========

A=zeros(n,m); % for incidence matrix

A(E(:,1:2)+repmat(([1:m]’-1)*n,1,2))=1; % we fill the incidence matrix

options=optimset(’bintprog’); % the default options

options.Display=’off’; % we change the output

% ============= We solve the MILP problem ==========

xmin=bintprog(-d,A’,ones(m,1),[],[],[],options);

nMS=find(round(xmin)); % the answer - numbers of vertexes

return

File name: grValidation.m

Description: A function used in grColVerOld.m.

Author: Sergii Iglin

URL: http://www.mathworks.com/matlabcentral/fileexchange/4266-grtheory-

graph-theory-toolbox/content//grValidation.m

function [m,n,newE] = grValidation(E);

% The validation of array E - auxiliary function for GrTheory Toolbox.

% Author: Sergii Iglin

% e-mail: siglin@yandex.ru

% personal page: http://iglin.exponenta.ru

if ~isnumeric(E),

error(’The array E must be numeric!’)

end

if ~isreal(E),

error(’The array E must be real!’)
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end

se=size(E); % size of array E

if length(se)~=2,

error(’The array E must be 2D!’)

end

if (se(2)<2),

error(’The array E must have 2 or 3 columns!’),

end

if ~all(all(E(:,1:2)>0)),

error(’1st and 2nd columns of the array E must be positive!’)

end

if ~all(all((E(:,1:2)==round(E(:,1:2))))),

error(’1st and 2nd columns of the array E must be integer!’)

end

m=se(1);

if se(2)<3, % not set the weight

E(:,3)=1; % all weights =1

end

newE=E(:,1:3);

n=max(max(newE(:,1:2))); % number of vertexes

return
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