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Abstract

The theoretical framework for an atomic slit experiment, a variation

of the triple slit experiment, is developed. Such experiments test the

validity of the Born rule according to which, interference fringes in

the triple-slit experiment can be written in terms of fringes observed

in various double and single slit experiments. The goal is to use preci-

sion of atomic experiments to improve previous experimental bounds.

However, general theories and experimental procedures applicable to

multi-slit experiments with different physical systems are not directly

translatable. We derive ideas on how to experimentally implement a

tritter and blocker, the necessary components in an atomic slit exper-

iment.
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Chapter 1

Introduction

The Born rule is essential to quantum mechanics ever since it was conceived by

Max Born in 1929 [1]. It states that for any quantum mechanical system, the

probability for a measurement outcome is given by the corresponding probability

amplitude squared. Although it is fundamentally at the core of quantum me-

chanics, it has yet to be thoroughly explored and fully verified. Building on the

previous work of Sorkin [2], one direct way to probe the Born rule is to look at

multi-path interference terms.

Several experiments have implemented the proposal of Sorkin. Most of them

were variations of multi-path diffraction experiments [3] [4] [5] [6] and any system

that involves interference can be used to test it. In the present thesis, we consider

an atomic analog for these diffraction experiments, which we call the atomic slit

experiment. Slits from diffraction experiments can be represented by different

atomic states, and laser pulses can be used to carefully control them. The main

motivation to such an approach is to extend the precision and accuracy of atomic

interferometers [7] [8] to these experiments. This is similar to a previous experi-

ment by Park et al. [9] that has hitherto the tightest experimental bounds.

In the following chapters, we present the theoretical analysis of three path exper-

iments and their relevance to the Born rule. The goal is to develop a theoretical

framework for the implementation of an atomic slit experiment.
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Specifically, the formalism of the Born rule and its consequences are discussed

in chapter 2. Certain important assumptions and approximations are also high-

lighted.

In chapter 3, we will broadly describe the general class of experiments that we

refer to as three path experiments, with the triple slit experiment as a reference

point. A method to quantify the violation of the Born rule and the proposal of

an atomic slit experiment is explained.

Chapter 4 examines the theory of oscillations between atomic states and hence

derives a schematic to obtain an equal superposition of three states, also referred

to as a tritter.

Chapter 5 details the atomic analog for blocking slits in the triple slit experi-

ment. Possible implementations are discussed, although a physical realisation of

such an operation has not been performed.
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Chapter 2

Born’s Rule

2.1 Formalism

Formally, Born’s rule states that for a quantum mechanical state specified by

its wavefunction ψ(r, t), the probability p(r,t) that a particle lies in the volume

element d3r located at r and at time t is given by:

p(r, t) = ψ∗(r, t)ψ(r, t)d3r

= |ψ(r, t)|2 d3r. (2.1)

Due to the quadratic nature, a subtle consequence is that third order and higher

interference terms do not affect the probability function. To see this, we will use

a short thought experiment.

Consider three distinct sources labelled A, B and C, emitting particles with some

measurable quantity. The system should also be on the scale such that quantum

mechanical effects are relevant. Source A, B and C emits particles with wave-

functions ψA, ψB, and ψC respectively. Thus, the whole system is described by

the wavefunction:

ψABC = ψA + ψB + ψC . (2.2)

3



Figure 2.1: A triple slit experiment with a non-classical path in the solid line while
the classical paths are in the dotted lines [11]. Under the Fraunhofer regime, the
contributions of the non-classical paths are negligible.

It should be noted for correctness, that the above sum is not exactly true [10]

[11]. Using the Feynman path integral formalism [12], the exact sum should also

include a ψNC term, which is the contribution from non-classical paths, which are

paths that do not extremise classical action. These could be looped or unusual

paths like in Fig. 2.1. However, under reasonable conditions, like the detector

being in the far field and very thin slits, these non-classical contributions become

negligible [13].

By the Born rule, the probability that we would measure a particle from any one

of these sources would be given by:

p(ABC) = |ψA + ψB + ψC |2

= (ψA + ψB + ψC)(ψ∗A + ψ∗B + ψ∗C)

= |ψA|2 + |ψB|2 + |ψC |2 + ψ∗AψB + ψ∗BψC + ψ∗CψA + c.c. (2.3)

4



Only pairwise combinations of ψ∗iψj, for i, j = A,B,C, are present. The second

order interference terms are the ones with i 6= j. Clearly, higher order interference

terms are absent. Although this is shown only for three sources, it can easily

be seen that increasing the number of sources will not introduce higher order

terms. With this observation in mind, we can use this three source framework to

investigate the Born rule.
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Chapter 3

Three Path Experiments

A three path experiment is one where a particle propagates via three paths before

being recombined and measured, but inferring the exact path taken is impossi-

ble. The output signal from these different paths can interfere constructively

or destructively with each other, but by Born’s rule, any three-way or higher

interference should be absent.

3.1 Experiment Schematic

An experimental scheme for a three path experiment is depicted in Fig. 3.1.

Figure 3.1: Experimental Schematic of a general three path experiment

There are three main components to this scheme, mainly a tritter, a blocker and
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some measurement at the end. We will first consider them as abstract processes in

the most general sense without any particular physical realisations. The purpose

of each component is discussed briefly before describing them and their possible

realisations in detail in the next chapters.

The tritter functions essentially to create three indistinguishable paths. In prin-

cipal, this can be realised in numerous ways, like a three-way beam splitter or

even simply three seperate laser sources. We will mainly focus on states in some

driving field and obtain a rather interesting tritter.

The blocker allows us to ”block” certain paths in the system, essentially remov-

ing those states. One may either redistribute the blocked states to the remaining

states or completely eliminate them entirely from the system. Although an ac-

tual realisation of either type of blockers are not yet completed in detail, a few

ideas are proposed and discussed, together with their limitations and drawbacks

in Chapter 4.

Any and every measurement must follow the Born rule if it is true. As such,

in the theoretical discussions, we will refer to making a measurement as corre-

sponding to some abstract and general operator |m〉 〈m|.

3.2 Triple Slit Experiment

One such experiment would be the triple slit experiment, consisting of a coherent

light source, three slits on an optically opaque plate separated spatially by some

finite distance and a detector arranged as in Fig. 3.2. The slits can be treated as

independent and coherent sources as the light passes through them, essentially

functioning as the tritter. Some form of shutter or secondary plate could be used

as the blocker [3] [4], while the measurement is some highly sensitive photon

detector.
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Figure 3.2: The triple slit experiment. Depending on the position of the detector
relative to the slits, the signal measured depends on the interference between
the slits. In principle, the interference can either be constructive, destructive or
somewhere in between, depending on the path differences.

3.3 Sorkin’s Quantity

To verify the Born rule, we require some method to quantify interference. We

use a quantity defined by Sorkin in previous works [2].

The first order Sorkin term for a slit labelled A is defined as:

S1(A) := pA, (3.1)
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where pA refers to the probability of detection of a particle having travelled only

through slit(s) denoted by the subscript A, or that we have blocked all other

slits except A. For the remainder of the discussion, subscripts of A,B,C will refer

to the labelled slits accordingly, unless otherwise stated. S1 is not zero for non-

trivial measurements.

For the second order Sorkin quantity for slits A and B,

S2(A,B) := pAB − pA − pB. (3.2)

This term non-zero and is a consequence of the additivity rules for probabilities

in Quantum Mechanics. If we write this down in terms of the wave functions, we

get

pAB − pA − pB = |ψA + ψB|2 − |ψA|2 − |ψB|2

= ψAψ
∗
B + ψ∗AψB,

(3.3)

which is exactly the second order interference term.

However, the third order term for slits A, B and C,

S3(A,B,C) := pABC − pAB − pBC − pAC + pA + pB + pC , (3.4)

is necessarily 0 by the Born rule. We can show this by directly comparing equa-

tions (2.3) and (3.3) to observe that,

pABC = pA + pB + pC + S2(A,B) + S2(B,C) + S2(A,C)

= pAB + pBC + pAC − pA − pB − pC ,
(3.5)

which clearly makes the third order Sorkin quantity vanish.

Thus, we now have a rubric to verify the Born rule experimentally. By mea-

suring these probabilities of detection for different combinations of blocked slits,

we can calculate the Sorkin quantity and observe how close to zero it is.
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3.4 Atomic Slits

Deviating from the triple slit experiment, a modified experiment using atomic

energy levels could be performed. With the Born’s rule being essential to all of

quantum mechanics, it is important to check its validity in different setups.

As a comparison, three energy levels can be thought of each as a slit. To distin-

guish between the triple slit, subscripts 1,2 and 3 are used instead of A, B and C

when referring to the atomic slits. Instead of interference in the spatial domain,

an atomic analog would generate similar interference patterns in the time domain.

Blocking a slit is considerably more complicated to replicate in an atomic slit

experiment. To ‘block off’ an energy level, the most straightforward way would

be to make a measurement on the system to check if the energy level is occupied

and only keep results that are not. This is similar to the triple slit where the

blockage can be viewed as a measurement. To do so, one may shine a resonant

laser that optically pumps the target level to some excited state which then decays

back to the any of the three energy levels through spontaneous emission. After

a sufficiently long duration, the population at the target level will be completely

transferred to the other unblocked levels and be effectively ‘blocked off’.

The process of ‘blocking’ has certain implications that need to be addressed.

In the physical blocking of a slit, the contributions of that particular slit is com-

pletely removed from the screen while the optical blocking transfers it to the other

unblocked levels. This complicates the blocking process because the repopulation

to the other levels will be incoherent and the transferring would finally cause the

Sorkin quantity to be non-zero. The effects of the incoherence will be further

discussed in the next section.
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Chapter 4

Tritter

The idea of a three state splitter, or tritter (Fig. 4.1) , is to begin with one of the

three states and output an equal and coherent superposition of the three states.

We focus on atomic energy levels as our states. To understand how to realise

an atomic tritter, we will build on the theoretical foundations on atomic state

transitions.

Figure 4.1: The tritter component of the three path experiment. It takes an
initial state |1〉 and outputs a superposition of all three states.

4.1 Rabi Oscillations

We begin with the simplest case of a two level system driven by near resonant

radiation. A semi-classical approach is used to describe the oscillation of the state
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populations, and the result is the well-known Rabi oscillations. The method used

is similar to that found in Allen, L. and Eberly, J.H.’s ”Optical Resonance and

Two-level Atoms” [14].

We begin by defining relevant parameters to the derivation. The two levels,

|1〉 and |2〉, form an orthonormal basis for the system, so 〈i|j〉 = δij for i, j = 1, 2;

with a resonant frequency of ω0 between them. A driving field is detuned by a

small amount, ∆, from the resonant frequency, meaning that it has a frequency

of ω = ω0 + ∆. These parameters are illustrated in Fig. 4.2.

Figure 4.2: Two-level system with a driving laser
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In general, our two-level quantum state can be expressed as:

|ψ(t)〉 = c1(t) |1〉+ c2(t) |2〉 , (4.1)

c1(t) and c2(t) satisfy the normalization condition:

|c1(t)|2 + |c2(t)|2 = 1. (4.2)

It can also be expressed as a two-vector with components ψi = 〈i|ψ〉:

ψ =

(
〈1|ψ〉
〈2|ψ〉

)
=

(
c1(t)

c2(t)

)
. (4.3)

4.1.1 Hamiltonian of the two-level system

To understand how the two-level system evolves in time, we determine its Hamil-

tonian, Ĥ, which is the operator corresponding to the total energy of the system,

and solve the Schrödinger equation:

i~
∂

∂t
ψ(t) = Ĥψ(t). (4.4)

We can seperate the Hamiltonian of our system into two components, the bare

Hamiltonian, which is the Hamiltonian in the absence of the driving field, Ĥ0,

and the interaction Hamiltonian, which only considers the effect of the driving

field, Ĥint. Or simply,

Ĥ = Ĥ0 + Ĥint. (4.5)

Without the driving field, the states |1〉 and |2〉 are the eigenstates of the bare

13



Hamiltonian, H0. Thus, H0 satisfies the following equations:

Ĥ0 |1〉 = 0 |1〉 , (4.6a)

Ĥ0 |2〉 = ~ω0 |2〉 , (4.6b)

where we choose the energy of the ground state |1〉 to be zero.

The bare Hamiltonian has a matrix representation, with respect to the energy

eigenstates |1〉 and |2〉, with components H0
i,j = 〈i|Ĥ0|j〉 :

H0 =

(
〈1|Ĥ0|1〉 〈1|Ĥ0|2〉
〈2|Ĥ0|1〉 〈2|Ĥ0|2〉

)

= ~

(
0 0

0 ω0

)
. (4.7)

The effect of the electromagnetic driving field is to couple the two states |1〉 and

|2〉. A transition dipole moment is induced and the driving field interacts with

it. This can be represented as another 2 x 2 matrix given by:

Hint = ~

(
0 Ωcos(ωt)

Ω∗cos(ωt) 0

)

=
~
2

(
0 Ω(eiωt + e−iωt)

Ω∗(eiωt + e−iωt) 0

)
. (4.8a)

where the Rabi frequency, Ω, is related to the induced dipole moment µ and

amplitude of the electromagnetic driving field E0 by the following equation:

~Ω = µE0. (4.9)

Now that we have defined both the bare and interaction Hamiltonian, we can

construct our total Hamiltonian, H = H0 +Hint (using equations (4.7) and (4.8)
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):

H =
~
2

(
0 Ω(eiωt + e−iωt)

Ω∗(eiωt + e−iωt) 2ω0

)
. (4.10)

The total Hamiltonian in this form is not immediately useful to us because it

contains a time dependence. To further simplify it, we make a transformation

from the Schrödinger picture to the interaction picture.

4.1.2 Interaction Picture

For any Hamiltonian in the Schrödinger picture, we may divide it into two parts

such that:

HS = H0,S +H1,S. (4.11)

Then, any operator, AI(t), in the interaction picture, including the Hamiltonian,

with a corresponding operator in the Schrödinger picture, AS(t), is defined as:

AI(t) = eiH0,St/~AS(t)e−iH0,St/~. (4.12)

In particular, the perturbation Hamiltonian is given by:

H1,I(t) = eiH0,St/~H1,S(t)e−iH0,St/~. (4.13)

In the interaction picture, the Schrödinger equation is transformed into the Schwinger-

Tomonaga equation:

i~
∂

∂t
ψI(t) = H1,I(t)ψI(t). (4.14)

.
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4.1.3 Solving in the interaction picture

Returning to our specific two-level system, we define H0,S as:

H0,S = ~

(
0 0

0 ω

)
, (4.15)

which, using equations (4.11) and (4.13), gives us the perturbation Hamiltonian,

H1,I = eiH0,St/~(H −H0,S(t))e−iH0,St/~

=
~
2

(
1 0

0 eiωt

)(
0 Ω(eiωt + e−iωt)

Ω∗(eiωt + e−iωt) 2(ω0 − ω)

)(
1 0

0 e−iωt

)
(4.16a)

=
~
2

(
0 Ω(1 + e−i2ωt)

Ω∗(1 + e−i2ωt) −2∆

)
. (4.16b)

It is here that we make the Rotating Wave Approximation (RWA) [15] which

drops the terms that are twice the driving frequency. The approximation is

justified because our driving field is near resonance, so rapidly oscillating terms

average to zero on an appreciable time scale. This simplifies our perturbation

Hamiltonian to:

H1,I =
~
2

(
0 Ω

Ω∗ −2∆

)
. (4.17)

Using this Hamiltonian in the Schwinger-Tomonaga equation (4.14), yields the

following system of equations:

i~

(
ċ1(t)

ċ2(t)

)
=

~
2

(
0 Ω

Ω∗ −2∆

)(
c1(t)

c2(t)

)
. (4.18a)

The Rabi frequency, Ω, can be set to be real by adjusting the phase of the driving

field to be zero. Using the initial conditions that the system starts with all the

population in state 1, i.e. c1(0) = 1 and c2(0) = 0, the solution to the set of

16



differential equations in (4.18) is:(
c1(t)

c2(t)

)
= e

it∆
2

(
cos(ΩRt

2
)− i ∆

ΩR
sin(ΩRt

2
)

−i Ω
ΩR

sin(ΩRt
2

)

)
, (4.19)

where Ω2
R = Ω2 + ∆2 is the total Rabi frequency.

It is worth noting that these solutions are in the interaction picture. However,

we can show that the probabilities to be in the states |1〉 and |2〉 are invariant

under this transformation. In the interaction picture,

|ψI〉 = eiH0,St/~ |ψS〉 , (4.20)

so the transformation of states between the Schrödinger and interaction picture

is just applying a global phase.

4.2 Coherent Raman Transitions

Suppose now that instead of just a two-level system, we have more energy levels.

It turns out that we can configure such systems to produce unique transitions

and couplings between the states. We begin by analysing a system with just one

more additional energy level, the three-level atom with driving fields made up of

two lasers in a Λ configuration as shown in Fig. 4.3. The following discussion is

based on the work of Dotsenko [16]. Using the same convention as the previous

section, any quantum state of this system can be expressed as:

|ψ(t)〉 = c1(t) |1〉+ c2(t) |2〉+ ce(t) |e〉 . (4.21)

In vector form, this is also

ψ =

c1(t)

c2(t)

ce(t)

 . (4.22)
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Figure 4.3: Three-level system in the Λ configuration

The energy levels |1〉 and |e〉 are coupled by the pump laser, while |2〉 and |e〉 are

coupled by the Stokes laser. The net effect is that |1〉 and |2〉 are coherently cou-

pled by both lasers. This is the coherent Raman transition. For this to happen,

the inequaility ∆ � Γ has to be satisfied, where Γ is the linewidth of the ex-

cited level and is related to the rate of spontaneous emission. Since spontaneous

emission is an incoherent process, we must have the line width to be negligible

relative to all other parameters.

An interesting property of coherent Raman transitions is that with a sufficiently

large detuning, ∆, of the Raman beams from the excited state, the excited state

does not get populated and a virtual state is instead involved in the transitions.

18



4.2.1 Hamiltonian of the Λ sytem

Like the Rabi problem, we begin by determing the Hamiltonian of the system. We

can view the Raman transition as two seperate Rabi oscillations, one between the

levels |1〉 and |e〉, characterised by the Rabi frequency Ω1, and the other between

|2〉 and |e〉, characterised by Ω2. Using the results from the previous section, we

then have the matrix representation for the Hamiltonian given by (note that our

detunings now have different sign):

Ĥ =
~
2

 0 0 Ω1

0 2δ Ω2

Ω∗1 Ω∗2 2∆

 . (4.23a)

4.2.2 Solutions to the Λ system

Solving the Schrödinger equation is then equivalent to solving the following sys-

tem of equations:

i~

ċ1(t)

ċ2(t)

ċe(t)

 =
~
2

 0 0 Ω1

0 2δ Ω2

Ω∗1 Ω∗2 2∆


c1(t)

c2(t)

ce(t)

 . (4.24)

Or, more explicitly,
iċ1(t) = 1

2
Ω1ce(t),

iċ2(t) = 1
2
Ω2ce(t) + δc2(t),

iċe(t) = 1
2
Ω∗1c1(t) + 1

2
Ω∗2c2(t) + ∆ce(t).

(4.25)

While this system is solvable, the solutions are significantly more complicated

than the Rabi oscillations. As such, one would look for certain limiting conditions

and approximations to simplify the system.

As before, we can set our Rabi frequencies to be real by adjusting the relative
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phases of the driving fields to be zero. Also, note that ċe(t) is almost twice of

ċ1(t) and ċ2(t). Similar to the RWA, we would expect that ċe(t) averages to zero

over many oscillations. This effectively reduces our system to a two-level one and

is also known as adiabatic elimination. Our reduced system is now:iċ1(t) = − 1
4∆

Ω1(Ω1c1(t) + Ω2c2(t)),

iċ2(t) = − 1
4∆

Ω2(Ω1c1(t) + Ω2c2(t)) + δc2(t).
(4.26)

With a new effective Hamiltonian written as:

Heff = − ~
4∆

(
Ω2

1 Ω1Ω2

Ω1Ω2 Ω2
2 − 4δ∆

)
. (4.27)

Interestingly, our two states |1〉 and |2〉 are now coupled through the two-step

process of absorption and emission, as observed from the off-diagonal elements in

this new Hamiltonian. Solving (4.26) using the initial conditions that c1(0) = 1

and c2(0) = 0 gives us the time dependence of the system:

|c1(t)|2 = 1− Λ sin2(
Ω0

2
t), (4.28a)

|c2(t)|2 = Λ sin2(
Ω0

2
t), (4.28b)

where Ω0 = Ω1Ω2

2∆
is the resonance Rabi frequency, ΩR =

√
Ω2

0 + δ2 is the gen-

eralised Rabi frequency and Λ =
Ω2

0

Ω2
R

is the amplitude of the population oscillation.

4.3 Tripod System

From the description of Raman transitions, we understand how to couple two

stable ground states by using a three level system. A natural extension would

then be to couple three states by using a four level system. This is the main idea

of the tritter. The four level system, or tripod system is shown in Fig. 4.4.
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Figure 4.4: Four-level system, or Tripod system.

As before, any quantum state in this system can be written as:

|ψ(t)〉 = c1(t) |1〉+ c2(t) |2〉+ c3(t) |3〉+ ce(t) |e〉 , (4.29)

or as a vector,

ψ(t) =


c1(t)

c2(t)

c3(t)

ce(t)

 . (4.30)

For our tritter to work, we must couple the three ground states together without

populating the excited state. Thus, the inequality ∆� Γ must hold.

When comparing with the triple slit experiment, each slit is essentially identical

to another. To keep this similarity, the three ground states should be degenerate

energy levels, or close enough, in the scale of the energy gap between the excited

state, to be considered degenerate. One potential problem would be that for

degenerate energy levels, the same laser could have the same effect on all three

states because it corresponds to the same energy gap between the virtual state.

However, we can get past this by considering angular momentum selection rules.
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For |e〉 with some fixed orbital angular momentum number, we can use polarised

lasers in such a way that only excitation via laser 1 is allowed for |1〉, etc. As

such, the maximum number of equal energy states that can be coupled is three,

corresponding to the total number of polarisation states of light, namely linear,

circular positive and circular negative.

4.3.1 Hamiltonian for the Tripod system

The total Hamiltonian following derivations from the previous section is given

by:

Ĥ =
~
2


0 0 0 Ω1

0 2δ2 0 Ω2

0 0 2δ2 Ω3

Ω1 Ω2 Ω3 2∆

 , (4.31)

And the corresponding Schrödinger equation to solve is:

i~


ċ1(t)

ċ2(t)

ċ3(t)

ċe(t)

 =
~
2


0 0 0 Ω1

0 2δ2 0 Ω2

0 0 2δ2 Ω3

Ω1 Ω2 Ω3 2∆



c1(t)

c2(t)

c3(t)

ce(t)

 . (4.32)

4.3.2 Solutions to the Tripod system

This is essentially a system of 4 coupled differential equations with 8 variables,

which is significantly more complicated than both the Raman transitions and

Rabi oscillations. As such, we will look for more limiting conditions and approx-

imations to simplify the system to a more manageable form.

Firstly, we can use the adiabatic elimination like in the Raman transitions to

reduce our system to 3 coupled differential equations. We can tune the lasers
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such that:

δ2 = δ3 = 0. (4.33)

This also gives the strongest coupling (see equation (??)).

Recalling the relation between the Rabi frequency to the amplitude of the driving

field in (4.9), we can also choose the laser power such that:

Ω1 = Ω2 = Ω3 = Ω. (4.34)

Thus, our system of equations now takes the simplified form:
iċ1(t) = − 1

4∆
Ω2(c1(t) + c2(t) + c3(t)),

iċ2(t) = − 1
4∆

Ω2(c1(t) + c2(t) + c3(t)),

iċ3(t) = − 1
4∆

Ω2(c1(t) + c2(t) + c3(t)).

(4.35)

With the effective Hamiltonian being:

Heff = − 1

4∆

Ω2 Ω2 Ω2

Ω2 Ω2 Ω2

Ω2 Ω2 Ω2

 . (4.36)

For consistency in the experiment, we will always start with a fixed initial state.

Here, we always begin with a state population that is all in |1〉. This corresponds

to using the initial state condition of c1(0) = 1, c2(0) = 0 and c3(0) = 0, and so

we compute the solution of (4.35):

c1(t) =
1

3
[2 + cos(

3Ω2t

4∆
)− i sin(

3Ω2t

4∆
)], (4.37a)

c2(t) =
1

3
[−1 + cos(

3Ω2t

4∆
)− i sin(

3Ω2t

4∆
)], (4.37b)

c3(t) =
1

3
[−1 + cos(

3Ω2t

4∆
)− i sin(

3Ω2t

4∆
)]. (4.37c)
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For symmetry reasons, c2(t) = c3(t).

4.3.3 Realising the Tritter

The state populations oscillate in time according to these time dependence func-

tions. We can check that the population of the system is conserved.

|c1(t)|2 + |c2(t)|2 + |c3(t)|2 =
1

9
[4 + 4 cos(

3Ω2t

4∆
) + 1− 2 cos(

3Ω2t

4∆
) + 1 + 1− 2 cos(

3Ω2t

4∆
) + 1]

=
1

9
(9) = 1.

(4.38)

For a fixed time τ , the tritter will output a fixed superposition of states. Then, if

we want our tritter to evenly distribute to all 3 states, we require the condition

that:

|c1(τ)|2 = |c2(τ)|2 = |c3(τ)|2 =
1

3
. (4.39)

We do not need to explicitly solve for c2(τ) and c3(τ) because they are equal and

solutions will follow as long as we solve c1(τ). To obtain the duration of τ , we

solve the equation:

|c1(τ)|2 =
1

9
[4 + 4 cos(

3Ω2τ

4∆
) + cos2(

3Ω2τ

4∆
) + sin2(

3Ω2τ

4∆
)]

=
1

9
[5 + 4 cos(

3Ω2τ

4∆
)] =

1

3
.

(4.40)

The solution is:

τ =
8π∆

9Ω2
+ 2kπ, (4.41)

for some integer k. We choose k = 0 to have τ as short as possible.

Thus, we have realised the tritter by using this tripod system and a τ -pulse.
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4.3.4 Tritter as a Unitary Operator

The tritter acts as some operator on the states |1〉, |2〉, and |3〉. Exactly what

this operator is will be discussed in this section.

After solving for τ , we can now explicitly write the coefficients of the states

after passing through the tritter:

c1(τ) =
1√
3
ei
π
6 , (4.42a)

c2(τ) =
1√
3
ei

−7π
6 , (4.42b)

c3(τ) =
1√
3
ei

−7π
6 . (4.42c)

Then, we can express the tritter operator as T̂ , where

T̂ |1〉 =
1√
3
ei
π
6 |1〉+

1√
3
ei

−7π
6 |2〉+

1√
3
ei

−7π
6 |3〉 . (4.43)

In fact, we can generalise T̂ for any input state. It simply takes the input state,

redistributes the population equally to all 3 states while introducing the phases

eiτ1 on the input and eiτ2 on the other states, where

τ1 =
π

6
, (4.44a)

τ2 =
−7π

6
. (4.44b)

In other words,

T̂ |k〉 =
1√
3
eiτ1 |k〉+

∑
j 6=k

1√
3
eiτ2 |j〉 , (4.45)

for j, k = 1, 2, 3.

Interestingly, T̂ is also a unitary operator. To show this, we simply need to
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show that T̂ T̂ † = 1. We begin by constructing T̂ .

T̂ij = 〈i| T̂ |j〉 ,

T̂ =
1√
3

e
iτ1 eiτ2 eiτ2

eiτ2 eiτ1 eiτ2

eiτ2 eiτ2 eiτ1 .

 (4.46a)

Taking note that,

eiτ1 · e−iτ2 = ei
8π
6 , (4.47)

and,

ei
8π
6 + e−i

8π
6 = −1. (4.48)

It is easy to see that,

T̂ T̂ † =
1

3

e
iτ1 eiτ2 eiτ2

eiτ2 eiτ1 eiτ2

eiτ2 eiτ2 eiτ1


e

iτ1 eiτ2 eiτ2

eiτ2 eiτ1 eiτ2

eiτ2 eiτ2 eiτ1


†

=
1

3

3 0 0

0 3 0

0 0 3


= 1,

(4.49)

as expected for a unitary operation.
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Chapter 5

Blocking of States

The next component in the experimental schematic is the realisation of the blocker

(Fig. 5.1 in our atomic slit experiment. In the most general sense, such a process

would take in any input of the superposition of states |1〉, |2〉 and |3〉, and remove

particular states from the ouput.

Figure 5.1: The blocker component of the three path experiment. It takes in an
input of a superposition of states and selectively ”blocks” certain states.

In other words, we can represent it as an operator B̂i,j,k, where the subscript

here indicates the states that are blocked and 0 means no state is blocked. For

consistency, the indexes will be arranged in ascending order. Then, for example,

blocking state |1〉 is equivalent to the operator B̂0,0,1 while blocking states |1〉 and

|2〉 refers to the operator B̂0,1,2. The action of B̂0,0,1 on a superposition of |1〉, |2〉
and |3〉 is given below:

B̂0,0,1(c1 |1〉+ c2 |2〉+ c3 |3〉) = c2 |2〉+ c3 |3〉 . (5.1)
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This is similar to the blocking of slits in the triple slit experiment, where the

blocked photons do not reach the detector. We will refer to such a process as the

elimination of states.

5.1 Elimination of States

In the triple slit case, the states are allowed to interfere in the spatial domain

between the screen and the slits while the states in from the atomic slit using

the elimination scheme only undergo free evolution. For the degenerate energy

levels in our tripod system, this does not generate a phase difference as every

state gains the same phase of e−iEt0/~ where E is the energy of the state and t0

is the duration of the evolution. No interaction zone is immediately apparent.

Consider now, the addition of another tritter between the blocking and the mea-

surement. The second tritter here functions as an interaction zone that mixes

the states. We will show that under this new schematic, the Sorkin quantity still

vanishes.

From the previous chapter, we are clear how to states evolve after interaction

with the first tritter. The operator here for the second tritter is essentially iden-

tical since we are using the same configuration. The main difference is now that

the input state is no longer always the pure state |1〉. For the blocking of state

|1〉 under the elimination scheme, the input state is then:

ψ23 = B̂0,0,1(
1√
3

[eiτ1 |1〉+ eiτ2 |2〉+ eiτ2 |3〉]

=
1√
3

[eiτ2 |2〉+ eiτ2 |3〉].
(5.2)
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Consequently, the effect of the operator T̂ on this input is given as:

T̂ψ23 =
1√
3
T̂ [eiτ2 |2〉+ eiτ2 |3〉]

=
1

3
[eiτ2(eiτ2 |1〉+ eiτ1 |2〉+ eiτ2 |3〉+ eiτ2(eiτ2 |1〉+ eiτ2 |2〉+ eiτ1 |3〉)].

(5.3)

Without working out explicitly, the remaining relevant terms are given as:

T̂ψ123 =
1√
3

[eiτ1T̂ |1〉+ eiτ2T̂ |2〉+ eiτ2T̂ |3〉], (5.4a)

T̂ψ12 =
1√
3

[eiτ1T̂ |1〉+ eiτ2T̂ |2〉 , (5.4b)

T̂ψ13 =
1√
3

[eiτ1T̂ |1〉+ eiτ2T̂ |3〉], (5.4c)

T̂ψ23 =
1√
3
T̂ [eiτ2 |2〉+ eiτ2T̂ |3〉], (5.4d)

T̂ψ1 =
1√
3

[eiτ1T̂ |1〉], (5.4e)

T̂ψ2 =
1√
3

[eiτ2T̂ |2〉], (5.4f)

T̂ψ3 =
1√
3

[eiτ2T̂ |3〉], (5.4g)

T̂ψ0 = 0. (5.4h)

Similar to (5.15), the Sorkin quantity vanishing is equivalent to the statement

that

T̂ψ123 − T̂ψ12 − T̂ψ13 − T̂ψ23 + T̂ψ1 + T̂ψ2 + T̂ψ3 − T̂ψ0 = 0. (5.5)

It is clear from our set of equations (5.3) and (5.4) that there are 2 positive con-

tributions of T̂ |j〉, for j = 1,2,3, from unblocked and single blocked terms and 2

negative contributions from the double blocked terms. Thus, the Sorkin quantity

does indeed vanish.

Although a clear experimental procedure to eliminate states has not yet been

realised. A few potential concepts have been thought of.
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Initially, an idea was to resonantly excite particular states to some other ex-

cited state that is not one of the four levels relevant to the tripod configuration.

However, this would introduce alot of noise to the system in the form of sponta-

neous decays from this excited state.

Recoil-induced resonances [17] [18] could be used to couple target states to higher

momentum states, either allowing them to escape a magnetic trap entirely or al-

lows for distinguishing these faster states. A detailed plan utilising this has not

been fully worked out yet.

5.2 Dephasing

Similar to the elimination of states, another possible realisation of a blocker could

be by dephasing.

In the most general sense, suppose we have a superposition of states |1〉, |2〉,
and |3〉 given by:

ψ = α1e
iφ1 |1〉+ α2e

iφ2 |2〉+ α3e
iφ3 |3〉 , (5.6)

where the coefficients and phases of the states can be any sensible value. De-

phasing is proposed as a possible method to block states, corresponding to the

operation:

Dk(|ψ〉 〈ψ|) =
1

2π

∫ 2π

0

|ψ〉 〈ψ| dφk, (5.7)

for the blocking of the slit labelled k. Note that this operation essentially aver-

ages the exponential function (with iφk as exponent) over its period of 2π. Thus,

it simply reduces all eiφk terms to zero.
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In matrix form, we have that,

|ψ〉 〈ψ| =

 |α1|2 α1α
∗
2e
i(φ1−φ2) α1α

∗
3e
i(φ1−φ3)

α2α
∗
1e
i(φ2−φ1) |α2|2 α2α

∗
3e
i(φ2−φ3)

α3α
∗
1e
i(φ3−φ1) α3α

∗
2e
i(φ3−φ2) |α3|2,

 (5.8)

which means blocking slits is just reducing the corresponding off-diagonal terms

to zero.

To show that this operation still gives a vanishing Sorkin quantity, we first list

all the relevant terms.

ρ̂0 = |α1|2 |1〉 〈1|+ |α2|2 |2〉 〈2|+ |α3|2 |3〉 〈3| , (5.9a)

ρ̂1 = ρ̂0, (5.9b)

ρ̂2 = ρ̂0, (5.9c)

ρ̂3 = ρ̂0, (5.9d)

ρ̂12 = ρ̂0 + α1α2 ∗ ei(φ1−φ2) |1〉 〈2|+ α2α1 ∗ ei(φ2−φ1) |2〉 〈1| , (5.9e)

ρ̂13 = ρ̂0 + α1α3 ∗ ei(φ1−φ3) |1〉 〈2|+ α3α1 ∗ ei(φ3−φ1) |3〉 〈1| , (5.9f)

ρ̂23 = ρ̂0 + α2α3 ∗ ei(φ2−φ3) |2〉 〈3|+ α3α2 ∗ ei(φ3−φ2) |3〉 〈2| , (5.9g)

ρ̂123 = ρ̂0 + α1α2 ∗ ei(φ1−φ2) |1〉 〈2|+ α1α3 ∗ ei(φ1−φ3) |1〉 〈3| (5.9h)

+ α2α3 ∗ ei(φ2−φ3) |2〉 〈3|+ h.c. (5.9i)

Using these terms in (5.15), there are 4 ρ̂0 positive contributing terms, with an-

other 4 negative contributions. Similarly, the off-diagonal terms exactly cancel

out, so the Sorkin quantity is still zero.

An actual experimental procedure for dephasing has not been thought of yet.

One possible idea is quantum decoherence by coupling the state to the environ-

ment.
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5.3 Redistribution of States

Suppose now, that instead of removing states, we redistribute the population of

the blocked states to the other unblocked states. We will eventually show that

this scheme for blocking does not always work.

Redistribution could be achieved through spontaneous emission. Here, we pro-

pose to couple the states that are intended to be blocked by resonant lasers to

the excited state in the tripod system. We can use polarised lasers such that

transitions from the other states are forbidden by the selection rules for angular

momentum. From this excited state, the electron will decay incoherently back

to the ground states |1〉, |2〉, or |3〉 with transition probabilities related to the

Clebsch-Gordan coefficients, r1, r2 and r3 respectively. Therefore,

r1 + r2 + r3 = 1. (5.10)

An example of blocking state |2〉 is shown in Fig. ??

Figure 5.2: Blocking state |2〉 using the redistribution scheme. |2〉 is excited and
then spontaneously decays back to any of the three ground states with rate r1,
r2 and r3.
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5.3.1 1-Cycle

Suppose the resonant laser excites all populations previously in state |k〉. By

”1-cycle”, we mean that all the population of the excited state spontaneously

decays to the ground states. The ”1” refers to this process occurring only once.

The result of the process is a mixed state, so we need to work with density

operators. The full calculations are left to Appendix 7.1, and the final results are

given here. After blocking state |1〉, the density operator for the system becomes:

ρ̂23 = |c2|2 |2〉 〈2|+ |c3|2 |3〉 〈3|+ c2c
∗
3 |2〉 〈3|+ c3c

∗
2 |3〉 〈2|+ |c1|2R, (5.11)

where the term R can be thought of as the net effect of the spontaneous decay

from the excited state, and is given by:

R = r1 |1〉 〈1|+ r2 |2〉 〈2|+ r3 |3〉 〈3| . (5.12)

Similarly, blocking state |1〉 and |2〉 corresponds to:

ρ̂3 = |c3|2 |3〉 〈3|+ (|c1|2 + |c2|2)R. (5.13)

Equations (5.11) and (5.13) agree with what one would expect from blocking

states; the states that are not blocked remain unaffected but the blocked states

(represented by the factor multiplying R) are redistributed based on R.
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All the relevant density operators are listed below:

ρ̂1 = |c1|2 |1〉 〈1|+ (|c2|2 + |c3|2)R, (5.14a)

ρ̂2 = |c2|2 |2〉 〈2|+ (|c1|2 + |c3|2)R, (5.14b)

ρ̂3 = |c3|2 |3〉 〈3|+ (|c1|2 + |c2|2)R, (5.14c)

ρ̂12 = |c1|2 |1〉 〈1|+ |c2|2 |2〉 〈2|+ c1c
∗
2 |1〉 〈2|+ h.c.+ |c3|2R, (5.14d)

ρ̂23 = |c2|2 |2〉 〈2|+ |c3|2 |3〉 〈3|+ c2c
∗
3 |2〉 〈3|+ h.c.+ |c1|2R, (5.14e)

ρ̂13 = |c1|2 |1〉 〈1|+ |c3|2 |3〉 〈3|+ c1c
∗
3 |1〉 〈3|+ h.c.+ |c1|2R, (5.14f)

ρ̂123 = |c1|2 |1〉 〈1|+ |c2|2 |2〉 〈2|+ |c3|2 |3〉 〈3| , (5.14g)

+ c1c
∗
2 |1〉 〈2|+ c2c

∗
3 |2〉 〈3|+ c1c

∗
3 |1〉 〈3|+ h.c., (5.14h)

ρ̂0 = R. (5.14i)

To fit these densities into the Sorkin quantity, we need the probability for a gen-

eral measurement m̂, i.e. Pi,j,k = 〈m| ρi,j,k |m〉. However, if we were to carefully

observe the third order Sorkin quantity defined in (3.4), we notice that there is

no zeroth term. A possible justification for ρ̂0 is that unlike the triple slit exper-

iment, blocking all 3 slits does not give a zero measurement based on this scheme.

From the relation between the density operators and the probability for a mea-

surement, having the Sorkin quantity (3.4) to vanish is equivalent to the following

sum to be zero:

〈m| ρ̂123 − ρ̂12 − ρ̂13 − ρ̂23 + ρ̂1 + ρ̂2 + ρ̂3 − ρ̂0 |m〉 . (5.15)

It is clear from our equations above that this sum is indeed zero. Thus, we can

actually use the 1-cycle scheme as our blocker, provided that such a short laser

pulse can be realised. To describe the system on a long timescale, we generalise

the idea to N-cycles and then to ∞-cycles.
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5.3.2 N-Cycle

The N-cycle is a continuation from the 1-cycle, with the unblocked states again

unaffected and the blocked states going through the excitation and decay cycle

N times. Essentially, this is a recursion N times. The same subscript notation is

used to indicate which states are unblocked and the leading number denotes the

N-th cycle.

For the 2-cycle, blocking states |2〉 and |3〉 gives:

R
(2)
1 = r1 |1〉 〈1|+ (r2 + r3)(r1 |1〉 〈1|+ r2 |2〉 〈2|+ r3 |3〉 〈3|), (5.16)

and blocking only state |3〉 gives:

R
(2)
12 = r1 |1〉 〈1|+ r3r1 |1〉 〈1|+ r2 |2〉 〈2|+ r3r2 |2〉 〈2|+ r2

3 |3〉 〈3|). (5.17)

While the 3-cycle gives:

R
(3)
1 = r1 |1〉 〈1|+ (r2 + r3)r1 |1〉 〈1|+ (r2 + r3)2r1 |1〉 〈1|

+ (r2 + r3)2(r2 |2〉 〈2|+ r3 |3〉 〈3|),
(5.18)

and,

R
(3)
12 = r1 |1〉 〈1|+ r1r3 |1〉 〈1|+ r1r

2
3 |1〉 〈1|

r2 |2〉 〈2|+ r2r3 |2〉 〈2|+ r2r
2
3 |2〉 〈2|+ r3

3 |3〉 〈3| .
(5.19)

In general, for N cycles,

R
(N)
1 =

N∑
i=1

(r1(r2 + r3)i−1 |1〉 〈1|) + (r2 + r3)N−1(r2 |2〉 〈2|+ r3 |3〉 〈3|), (5.20a)

R
(N)
12 =

N∑
i=1

(ri−1
3 (r1 |1〉 〈1|+ r2 |2〉 〈2|)) + rN3 |3〉 〈3| . (5.20b)
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5.3.3 ∞-Cycle

From the constraint (5.10) on the transition probabilites, we know that in the

limit to infinity, R
(N)
1 converges because it is just a geometric progression.

lim
N→∞

R
(N)
1 = B1 =

r1

1− r2 − r3

|1〉 〈1| (5.21a)

= |1〉 〈1| , (5.21b)

lim
N→∞

R
(N)
12 = B12 =

r1

1− r3

|1〉 〈1|+ r2

1− r3

|2〉 〈2| (5.21c)

=
r1

r1 + r2

|1〉 〈1|+ r2

r1 + r2

|2〉 〈2| . (5.21d)

In fact, we can easily see that we can extend this to all R
(N)
ijk terms to obtain:

B1 = |1〉 〈1| , (5.22a)

B2 = |2〉 〈2| , (5.22b)

B3 = |3〉 〈3| (5.22c)

B12 =
r1

r1 + r2

|1〉 〈1|+ r2

r1 + r2

|2〉 〈2| , (5.22d)

B23 =
r2

r2 + r3

|2〉 〈2|+ r3

r2 + r3

|3〉 〈3| , (5.22e)

B13 =
r1

r1 + r3

|1〉 〈1|+ r3

r1 + r3

|3〉 〈3| , (5.22f)

B123 = 0, (5.22g)

B0 = r1 |1〉 〈1|+ r2 |2〉 〈2|+ r3 |3〉 〈3| , (5.22h)

From the 1-cycle, we know that all the unblocked terms always cancels out in the

calculation of the third order Sorkin quantity.

Notice, however, that arranging the relevant terms like in (5.15) does not yield a
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zero. In fact, the Sorkin quantity for this case can be written explicitly as:

S
(∞)
3 = (|c2|2 + |c3|2 − r1 −

|c1|2r1

r1 + r3

− |c1|2r1

r1 + r2

)| 〈m|1〉 |2

+ (|c1|2 + |c3|2 − r2 −
|c2|2r2

r1 + r2

− |c2|2r2

r2 + r3

)| 〈m|2〉 |2

+ (|c1|2 + |c2|2 − r3 −
|c3|2r3

r1 + r3

− |c3|2r3

r2 + r3

)| 〈m|3〉 |2,

(5.23)

for a general measurement |m〉 〈m|. This quantity is, in general, non-zero except

for specific r1, r2 and r3 values.

Earlier, in the 1-cycle section, it was discussed that a zeroth term was intro-

duced because blocking all 3 slits does not give a trivial measurement. This is

true for blocking that eliminates states, but the ”sum-over-histories” approach

used in deriving the Sorkin terms is incompatible with redistribution of states.

One way of seeing this is that while the sets of possible measurements from each

unblocked slit is always fixed in the elimination of states, redistribution adds on

to them depending on which slit is blocked. Then, the quantity in (5.23) is some

residue from these extra contributions.

While the 1-cycle could potentially work as our blocker, the redistribution of

states cannot directly verify the Born rule using the Sorkin quantity.
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Chapter 6

Conclusions

The Born rule does not allow for three path or higher interference. An effec-

tive measure to quantify these interferences, termed the Sorkin quantity, is used.

Based on previous works in the verification of the Born rule [3] [4] [5] [6] [9], there

is still no significant evidence for possible violations of it. However, experimental

bounds can be lowered and more observations can be recovered.

In this thesis, the theoretical basis of three path experiments has been discussed

and the triple slit experiment is used as a reference point for future experiments.

An atomic analog for the triple slit experiment, referred to as the atomic slit

experiment, is proposed.

We have derived an implementation of an atomic tritter, using laser pulses of

certain durations to generate an equal superposition of three states. An essential

component to this tritter is the tripod configuration of electron energy levels.

Atoms such as strontium or rubidium could be used [19] [20].

Several ideas for the blocker are brought up but have yet to be implemented

experimentally. To maintain consistency with the triple slit experiment where

blocked photons do not reach the detector, the blocker must also remove states

from the system. It is shown that if instead, the states are redistributed, this

blocker is not always compatible with the Sorkin quantity and should thus be

avoided.
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6.1 Future Works

The contributions from non-classical paths in the triple slit experiment are neg-

ligible under reasonable assumptions such as in the far field regime or negligible

slit thickness [11] [13]. However, it is still not clear how these concepts directly

translate from optics to the atomic picture. A full description of the atomic slit

experiment can be analysed using the Feynman path integral formalism to show

parallels or dissimilarities in this regard.

Furthermore, in the realisation of the blocker, a potential concept using the

phenomena of recoil-induced resonances [17] [18] can be investigated. Target

states can be coupled to higher momentum states, eventually allowing for them

to either escape a magnetic trap entirely or be distinguished from the other states.

There is still work to be done in the theory for the atomic slit experiment. It

is worth noting that three path experiments are not only restricted to the triple

slit and atomic slit. Thus, developing a theory of the atomic slit experiment can

lead to more interesting variations of three path experiments.
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Chapter 7

Appendix

7.1 Density Operators fro redistribution

Working out the density operators associated with the blocking of states through

spontaneous emission for the 1-cycle, we start with not blocking any state. This

is then,

ρ̂123 = |ψ123〉 〈ψ123|

= |c1|2 |1〉 〈1|+ |c2|2 |2〉 〈2|+ |c3|2 |3〉 〈3|

+ c1c
∗
2 |1〉 〈2|+ c1c

∗
3 |1〉 〈3|+ c2c

∗
3 |2〉 〈3|+ h.c.

(7.1)

For the blocking of state 1, we first write down the renormalised superposition of

states |1〉 and 〈2|:

|ψ23〉 =
c2√

1− |c1|2
|2〉+

c3√
1− |c1|2

|3〉 . (7.2)
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Then the density operator is given by:

ρ̂23 = (1− |c1|2) |ψ23〉 〈ψ23|+ |c1|2R

= (1− |c1|2)(
|c2|2

1− |c1|2
|2〉 〈2|+ |c3|2

1− |c1|2
|3〉 〈3|+ c2c

∗
3

1− |c1|2
|2〉 〈3|+ h.c.)

+ |c1|2R

= |c2|2 |2〉 〈2|+ |c3|2 |3〉 〈3|+ |c1|2R.
(7.3)

For the blocking of states |1〉 and |2〉,

|ψ3〉 =
c3√

1− |c1|2 − |c2|2
|3〉 , (7.4)

so the density operator is,

ρ̂3 = (1− |c2|2 − |c3|2) |ψ3〉 〈ψ3|

= (1− |c2|2 − |c3|2)
|c3|2

1− |c1|2 − |c2|2
|3〉 〈3|+ (|c1|2 + |c2|2)R

= |c3|2 |3〉 〈3|+ (|c1|2 + |c2|2)R.

(7.5)

Blocking all three states corresponds to exciting all the population to the excited

state and allowing it to spontaneously decay. Then, the density operator for

blocking all states is,

ρ̂0 = R. (7.6)

7.2 Electromagnetically Induced Transparency

(EIT)

Under certain conditions in the Λ configuration, dark states may form. These are

states that have become decoupled from the driving fields [21]. Consider again

our interaction Hamiltionian for the Λ system. For two photon resonance, i.e.
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δ = 0,

Ĥint =
~
2

 0 0 Ω1

0 0 Ω2

Ω∗1 Ω∗2 2∆

 , (7.7)

and define θ and φ by:

tan θ =
Ω1

Ω2

, (7.8a)

tan 2φ =

√
Ω2

1 + Ω2
2

∆
. (7.8b)

This system has eigenstates given by:

|d+〉 = sin θ sinφ |1〉+ cos θ sinφ |2〉+ cosφ |e〉 , (7.9a)

|d0〉 = cos θ |1〉 − sin θ |2〉 , (7.9b)

|d−〉 = sin θ cosφ |1〉+ cos θ cosφ |2〉 − sinφ |e〉 . (7.9c)

The state |d0〉 does not contain the excited state and thus is the dark state. If

the atom is in this eigenstate, it cannot get excited to |e〉 and will remain in this

state.

7.3 Tripod systems in atoms

While this thesis does not focus too much on the experimental details, possible

options for tripod systems are strontium and rubidium [19] [20]. A diagram of

the Rubidium tripod is shown in Fig. 7.1.
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Figure 7.1: Two-tripod scheme for the D1 line of Rubidium-87 [19]. An external
magnetic field is applied and the states are shifted via the Zeeman effect.
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