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1 Abstract

In this report, we investigate the various properties of genuine multipartite
entanglement (GME). The focus is on two investigations. Firstly, we are inter-
ested in vanishing correlations in genuine multipartite entangled systems. One
might intuitively expect (extrapolating from a bipartite case) that GME is al-
ways accompanied by non-zero n-fold correlation functions. It has recently been
shown that this is not the case and this report provides new examples of this
phenomenon. Next we focus on the maximum dimension of the subspace con-
taining solely GME states. This is interesting as states from such subspaces are
robust to small perturbations, which is essential for example to measurement
based quantum computation.

2 Introduction to geometry in quantum physics

2.1 Hilbert Space and Bloch Sphere

In the early part of the 20th century, the Hilbert space is formulated along
with the birth of quantum mechanics, by the collaboration of various physicist
and mathematicians. The creation of Hilbert spaces allows physicists to express
physical states in quantum mechanics as sets of normalised vectors in Hilbert
spaces, and measurements or observables as self-adjoint operators acting on the
state. In general, Hilbert space is defined as a vector space with inner product
defined as below:

|a|2 = 〈a|a〉 (1)

where a is a vector.
In quantum mechanics, Hilbert space has several special properties such as:

• The inner product of 2 vectors denoted by 〈ψ1|ψ2〉 has to obey the follow-
ing Cauchy-Schwartz inequality relation,

| 〈ψ1|ψ2〉 | ≤ ||ψ1||||ψ2|| (2)

• The orthogonal projector in the Hilbert space is defined as Pi = |ψi〉〈ψi|,
where 〈ψi|ψj〉 = 0 for i 6= j. Any normalized |Ψ〉 =

∑
i 〈ψi|Ψ〉 |ψi〉, such

that, ∑
i

Pi =
∑
i

|ψi〉〈ψi| = 1 (3)

It is imperative to introduce a ’spinoff’ of Hilbert space, the projective Hilbert
space for later usage. The projective Hilbert space is derived from the pro-
jectivization of the Hilbert space, associating the Hilbert space to a projective
space, where the elements in the projective space are one-dimesional subspaces
of the Hilbert space. We begin first by defining a projective space. The projec-
tive space is the set of one-dimensional subspaces of a given vector space. In
other words, the projective space Pn is the set of lines that pass through the
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origin of the space defined. As we are mainly interested in the application to
quantum space, the focus will be on the complex projective space CPn, which
is defined as the set of rays in the complex space of Cn+1. Geometrically, CP 0

is a point in the space while, CP 1 is a 2-sphere. To illustrate this, consider
a particle with spin 1

2 . Every pure state of the particle will correspond to a
unique direction. This is isomorphic to a sphere, or CP 1. This sphere is known
as the Bloch sphere and the boundary of this sphere corresponds to the set of
pure states. In this representation, the north (ẑ) and south (−̂z) poles of the
sphere are denoted by |0〉 and |1〉 repectively. |0〉 and |1〉 are representation of
basis states of a 2 level quantum system describled by two-dimensional complex
vectors:

|0〉 =

(
1
0

)
& |1〉 =

(
0
1

)
(4)

2.2 Pure and Mixed states

In quantum mechanics, there are mainly 2 types of classification of quantum
systems; Pure and Mixed. Any pure state of a single particle can be represented
by any point in the Bloch sphere and for any n-particle composite system with
non-entangled pure state |ψ〉, it can be decomposed into the following form,

|ψ〉 = |φ1〉 ⊗ |φ2〉 ... ⊗ |φn〉 (5)

This allow us to have complete information for each individual system and thus
the exact state that each individual systems is in. Pure states also carry certain
key properties:

• The normalised inner product of the state by its conjugate has to be 1.

〈ψ|ψ〉 = 1 (6)

• The expectation value of a meaurement A on the pure state is:

〈ψ|A|ψ〉 = 〈A〉ψ (7)

• The expectation value can be expressed in terms of trace operator;

〈A〉ψ = Tr(APψ) (8)

• The Von Neumann entropy of pure states is 0.

For illustration, suppose we are to describle the state |ψ〉, of the particle
with spin 1

2 such that there is 0.5 chance to find it with ↑z spin and 0.5 chance
to find it with ↓z spin then;

|ψ〉 =
1√
2

(a |↑〉z + b |↓〉z) (9)

2



where a and b are coefficients and |a|2 = |b|2.

There are multiple solutions for a and b given the consideration for the phase of
the states and an additional measurement will be required to find a unique set
of solution for |ψ〉.For example, one can consider the solution where a = 1 and
b = i and compare it with the solution of a = 1 and b = 1. However, it can be
noted that the set of solutions for a forms a ’ray’ or one dimensional subspace in
the Hilbert space, which can be represented as qelement in the projective space.
The same treatment can also be applied to the set of b. The combination of
the elements of a and b will form a Variety which will be discussed in the later
portion. Physically, |ψ〉 is a superposition of |↑〉z and |↓〉z and thus,

|ψ〉 = |↑〉x (10)

for a = b = 1.
Mixed states are generated from the mixing of pure states such that measure-
ments cannot distingush which way the states were prepared. The mixed state
is defined as:

% =

k∑
i

pi |ψi〉〈ψi| (11)

fulfilling the following conditions:

• % = %†

• Tr(%) = 1

• % ≥ 0 or %2 ≥ %

• The Von Neumann entropy of mixed states is strictly positive.

Bennett [1] provided a simple case where mixed states can be generated. Sup-
pose we have a state similar to (9) and noise is introduced into the system
such that the system now has additional degrees of freedom. This will cause a
non-unitary evolution of system describle by equation (9) into the mixed state
%AB .

%AB =
1√
2

(a2 |↑z〉〈↑z|+ b2 |↓z〉〈↓z|) (12)

where a2 and b2 are coefficients.
Another difference comes when one takes a partial trace over B, on the density
matrix %AB , one obtains the following relation:

%̂A = TrB(|ψAB〉〈ψAB |) =
1

2
1 (13)

This is vastly different if applied to maximally entangled pure state from the
case of a pure disentangled state.
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2.3 Measurements in quantum systems

The expectation value of physical observables can be expressed in terms of
density matrices as in (8) for mixed states. One can generalise (8), such it
includes any generic mixed state. From (8), for an essemble of states,

〈A〉 =
∑
i

pi Tr[A |ψi〉〈ψi|] (14)

or

〈A〉 = Tr

[
A
∑
i

pi |ψi〉〈ψi|

]
(15)

since the Tr operator is linear.
Another key tool of quantum measurement theory is the cyclic permutation of
the Tr operator.

Tr(ABC) = Tr(BCA) = Tr(CAB) (16)

Suppose we do a measurement A on the system with state |ψa〉,

〈A〉 = 〈ψA|A|ψA〉 = Tr[|ψA〉〈ψA|A] = Tr[a |ψA〉〈ψA|] (17)

This allows us to perform and simplify certain operation in later discussions.

3 Entanglement

The field on Entanglement started in 1935 with the paper by Einstein, Podolsky
and Rosen. The paper points out the incompleteness of quantum mechanics and
the wave functions. The problem is restated and put in a different manner by
Bohm in 1957. Consider a system with 0 net angular momentum that decays
into 2 separate particles with spin 1

2 each. The system is descible by the following
equation:

|Ψ〉 =
1√
2

(|↑↓〉z − |↓↑〉z) (18)

Suppose after some time, the particles are far apart and a measurement is made
on one of the particles, we assume has 2 possible measurement values, ~

2 ẑ or

−~
2 ẑ. This means that the other particle must have values −~

2 ẑ or ~
2 ẑ cor-

respondingly. Thus the ẑ component of the spin of both particle is strongly
correlated. However, suppose one tried to measure the x̂ spin of one of the
particle, according to quantum mechanics the ẑ component becomes less defi-
nite, due to the effects of the measurement on the system. Since the ẑ spin of
both particles are strongly correlated, the ẑ spin of the second particle is also
affected. The strange behaviour comes when we have already assumed that the
particles are far apart. If the spin is not affected by the second measurement,
then the second particle will have definite values for x̂ and ẑ component of the
spin, which is inconsistent with Heisenberg’s Uncertainty principle. To solve this
problem, the idea of entanglement is introduced where the spins of the particlea
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are entangled such that the second measurement also affect the ẑ component of
the second particle, preventing it from having a definite value.

When particles are entangled, the quantum state of each individual particle
can no longer be defined independently and requires the whole system to be
described as a single state. For instance, for 2 entangled qubits in the Bell
state, we have,

|ψbell〉 =
1√
2

(|00〉+ |11〉) (19)

In this quantum state, there is equal probability of measuring |00〉 and |11〉. In
a less convenient form, one can express it as,

|ψbell〉〈ψbell| =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 (20)

3.1 LOCC and SLOCC

LOCC, local operation and classical communication refers to set of rules that
form the basis of entanglement theory. Suppose we have a state |ψlocc〉 that
is shared among 2 parties, Alice and Bob, such that both parties can perform
arbitary measurements and operations on the local system. Next, restrict the
communication channel between Alice and Bob to be classical. Then, under the
rules of LOCC, the possible types of transformation operation and creation of
the states are restricted. States that can be created by only using LOCC, are
separable. One can make use of the rules of LOCC to create a set of steps and
preparation methods to make conversion between certain states. Suppose there
is a non-zero probability to convert from |ψα〉 to |ψβ〉 under LOCC. Then the
operation in that convertion is known as stochastic local operation and classical
communication, SLOCC. States that can be transformed into one another under
SLOCC are called SLOCC equivalent.

3.2 Schmidt Rank

In the study of quantum information theory, one is mainly interested in 2 main
issues. The former being how to quantify entanglement and latter being how
many different types of entangement are there and how does one classify them.
To ease the process of entanglement classification and characterization, one in-
troduces a certain form of the state known as Schmidt decomposition.

For brevity, one can first consider a Hibert space HAB that is composed of
2 subspaces, HA and HB such that HAB = HA

⊗
HB . Without the loss of gen-

erality, one asummes that dim(HA) ≥ dim(HB). Then, there exist orthonormal
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states |iA〉 and |iB〉 such that,

|Ψ〉 =

dim(HB)∑
i=1

λi |iA〉 |iB〉 (21)

This statement is derived from mathematical factorisation of a matrix known
as Singular Value Decomposition:
Given a m × n matrix M , it can be factorized into the following form, V DUT

where,

• V : set of orthonormal eigenvectors of MMT

• U : set of orthonormal eigenvectors of MTM

• D : singlar values of M.

Following, let |k〉 and |l〉 be any abitary fixed orthonormal bases of Hilbert
space A and B respectively, then the state |Ψs〉 can be expressed as,

|Ψs〉 =
∑
k,l

λkl |k〉 |l〉 (22)

Setting λkl as the matrix M, one can decompose it such that,

|Ψs〉 =
∑
k,l

V DUT |k〉 |l〉 (23)

Since D is a diagonal matrix, with elements {a1.....aK} and setting
∑
m Umk |i〉

as |iA〉 and
∑
n V
∗
kn |j〉 as |iB〉, one obtains equation (22).

The number of non-zero diagonals is refered to as the Schmidt rank of the
system. In other words, Schmidt rank is the number of coefficient in the decom-
position. If the Schmidt rank of state |Ψ〉 of a composite system is 1, then the
state is a product state (separable state), which is expressed as:

|Ψs〉 = |ψ〉 ⊗ |φ〉 (24)

In other words, for a state to be entangled, its Schmidt rank has to be strictly
more than 1. One can also generalise Schmidt rank defined above to include
mixed states using convex hulls.

4 Genuine Multipartite Entanglement

A pure state is genuine multipartite entangled(GME) iff all partitions produce
mixed density matrices. Mixed reduced density matrix refers to the partial trace
of density matrix or the marginal. To put it in a more formal manner, a system

6



is separable if it can be written as a convex combination of product states. Let’s
illustrate this with simple cases of bipartite and tripartite systems.

Consider a bipartite system %AB , the system is separable iff,

%AB =
∑
i

pi%
i
A ⊗ %iB (25)

For system with more parties, there can be many different partitions for separa-
tion. However in this context, we are only interested in bipartition i.e divisible
into two parts. We shall then use a tripartite system as an example.

A tripartite system is fully separable iff,

%ABC =
∑
i

pi%
i
A ⊗ %iB ⊗ %iC (26)

And biseparable iff,

%ABC = p1%A|BC + p1%B|AC + p1%C|AB (27)

with
%A|BC =

∑
i

pi%
i
A ⊗ %iBC (28)

and so forth.
For instance, a GHZ state, |GHZ〉 = 1√

2
(|000〉+ |111〉) is genuine multipartite

entangled since one cannot express it in the form (27). On the other hand, the
state, |ψtri〉 = 1√

2
(|011〉 + |111〉) is biseparable, as |ψtri〉 can be express in the

following form:

|ψtri〉 =
1√
2

(|0〉+ |1〉)⊗ (|11〉) (29)

|ψtri〉 =
1√
2

(|01〉+ |11〉)⊗ (|1〉) (30)

For the case of mixed states, the verification of separability is not as simple.
For a bipartite case, one has the Peres-Horodecki criterion (PPT criterion) [2]
which is a necessary and sufficient condition for a system to be separable with
dimensions 2× 2 and 2× 3. Suppose we have a bipartite system with a density
matrix %ppt. Then one can express the matrix in terms of a chosen product
basis;

%ppt =

N∑
i,j

M∑
k,l

%ij,kl |i〉〈j| ⊗ |k〉〈l| (31)

If one does a partial transpose on the state (on one subspace), then the trans-
posed state is defined as:

%T1 =

N∑
i,j

M∑
k,l

%ji,kl |i〉〈j| ⊗ |k〉〈l| (32)
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If one performs the same operation on the other subspace, then the other trans-
posed state is defined as:

%T2 =

N∑
i,j

M∑
k,l

%ij,lk |i〉〈j| ⊗ |k〉〈l| (33)

If %T1 or %T2 is positive then, the matrix is said to be PPT and any PPT matrix
is separable in dimensions 2 × 2 and 2 × 3. For the multipartite case, there is
no such simple process. One needs to have many different criteria to aid in the
detection of GME. To better understand the problem, one can consider Dicke
states which are always GME.

|Dm
n 〉 =

1√(
m
n

)∑
{α}

∣∣D{α}〉 (34)

where, ∣∣D{α}〉 =
⊗
i6={α}

|0〉i
⊗
i={α}

|1〉i (35)

For instance, for n = 4, m = 2, we have 6 permutations of 1s and 0s:

•
∣∣D{12}

〉
= |1100〉

•
∣∣D{13}

〉
= |1010〉

•
∣∣D{14}

〉
= |1001〉

•
∣∣D{23}

〉
= |0110〉

•
∣∣D{24}

〉
= |0101〉

•
∣∣D{34}

〉
= |0011〉

Having our testing states, we can start defining various testing criteria or ’Wit-
ness’.

4.1 Criterion

The whole criterion or witness relies on the strict requirement of convexity. In
other words, when one mixes different separable states, another separable state
will be obtained. Most witnesses are necessary but non sufficient. As such,
a non violation of the witness does not equate to the state being a separable
or biseparable. Moreover when noise is introduced to the system, different
witnesses will have different ability to function properly. We can define a simple
noise threshold by mixing a simple noise matrix p × 1 in to a state that had
been proven to be entangled. The threshold can then be determined by solving
for p. Another issue with using entanglement is that generally, the minimum
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of 2 convex function is not instantly a convex function. This will lead to some
complication when one transit from a bipartite system to that of a multipartite
system. That being said, there are some criteria that can be generalised from
the bipartite cases, such as:

• Range criterion:
The range criterion states that a state % is separable if there exist a set
of product vectors that spans the range of %. However, the noise treshold
for this criterion is very low.

• Matrix realignment criterion:
The realignment criterion is based on the realigned matrix that is con-
structed from the density matrix of a bipartite system. It is especially
useful in distingushing bound entangled states from separable states. For
instance Bennett et at [1] 3 × 3 inseparable states and Horodeki’s 3 × 3
bound entangled states [2] were successfully tested by Chen [3].

The theorem states that given a A×B bipartite density matrix %AB that
is separable, then sum of all the singular values of the A2 ×B2 realigned
density matrix is less or equal to 1. As a result, a bipartite pure state is
separable iff the realigned matrix is equal to 1.

• Linear contraction criterion:
This is an extension from the Matrix realignment criterion by Horedecki
[4]. Suppose we have a density matrix similar to (32),

% =
∑
ij,kl

%ijkl |i〉〈j| ⊗ |k〉〈l| (36)

where %ijkl is a d2
1 × d2

2 matrix. The trace norm of the matrix %ijkl for
a pure state will be equal to 1 after normalization. Any permutation of
the indices of %ijkl will also give the same results. Then, at least in one
permutation, the dimension of the matrix will be (d1 × d2)× (d1 × d2). If
the state is separable,

Tr[||%ijkl||] =
∑
a

pa Tr[||Πp%ijkl||] (37)

where Πp is the permuation of ijkl.
The end results are similar to the PPT criterion,

Tr[||%ijkl||] ≤ 1 (38)

Tr[||%ikjl||] ≤ 1 (39)

This is further expanded to include multipartite cases in [1511.00375v1].

• For 3 qubit systems, some important observations and witnesses were
made by Guhne and Seevinck [5]. The first observation is that for a
biseparable tri-partite system %,

|%1,8| ≤
√
%2,2%7,7 +

√
%3,3%6,6 +

√
%4,4%5,5 (40)
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To see how this is true, assume a bi-separable pure tripartite state |ψbi〉 =
(a |0〉+ b |1〉)⊗ (c1 |00〉+ c2 |01〉+ c3 |10〉+ c4 |11〉). Then form the density
matrix,

% =



a2c21 a2c1c2 a2c1c3 a2c1c4 abc21 abc1c2 abc1c3 abc1c4
a2c1c2 a2c22 a2c2c3 a2c2c4 abc1c2 abc22 abc2c3 abc2c4
a2c1c3 a2c2c3 a2c23 a2c3c4 abc1c3 abc2c3 abc23 abc3c4
a2c1c4 a2c2c4 a2c3c4 a2c24 abc1c4 abc2c4 abc3c4 abc24
abc21 abc1c2 abc1c3 abc1c4 b2c21 b2c1c2 b2c1c3 b2c1c4
abc1c2 abc22 abc2c3 abc2c4 b2c1c2 b2c22 b2c2c3 b2c2c4
abc1c3 abc2c3 abc23 abc3c4 b2c1c3 b2c2c3 b2c23 b2c3c4
abc1c4 abc2c4 abc3c4 abc24 b2c1c4 b2c2c4 b2c3c4 b2c24


One can observe that |%1,8| = abc1c4 =

√
%4,4%5,5. This is only for the

A|BC partition. For B|AC and C|AB partition, the same logic applies.
Since, the square root of 2 positive linear function is concave, the proof
works for any mixture of states that have the bound above.
The next observation is that for any biseparable tripartite state,

|%2,3|+|%2,5|+|%3,5| ≤
√
%1,1%4,4+

√
%1,1%6,6+

√
%1,1%7,7+

1

2
(%2,2+%3,3+%5,5)

(41)
Using the density matrix % above, one can observe that for partition A|BC,
|%2,5| = abc1c2 =

√
%1,1%6,6 and that |%3,5| = abc1c3 =

√
%1,1%7,7. Lastly,

|%2,3| ≤ 1
2 (%2,2 + %3,3). Combining the conditions developed for other

partition, one obtain the criterion (42).

In our case we shall use another criterion that was developed by Guhne and
Seevinck for the Dicke state. It is based on the first observation, and generalizing
it to the multipartite cases.

Ξ|D
m
n 〉(%) ≤ √%0000%1111 +

∑
|I|=1

∑
|J|=3

√
%I%J +

3

2

∑
|I|=2

%I (42)

where Ξ|D
m
n 〉(%) is the sum of the absolute of the off-diagonal of % in the left

upper triangle and violation of this inequality means that the state is genuine
multipartite entangled. To illustrate the inequality and the definition of the
notations, consider the 4 partite Dicke state:∣∣D4

2

〉
=

1√
6

(|0011〉+ |0101〉+ |1001〉+ |0110〉+ |1010〉+ |1100〉 (43)
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Its density reads:

%d4 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

6 0 1
6

1
6 0 0 1

6
1
6 0 1

6 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

6 0 1
6

1
6 0 0 1

6
1
6 0 1

6 0 0 0
0 0 0 1

6 0 1
6

1
6 0 0 1

6
1
6 0 1

6 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

6 0 1
6

1
6 0 0 1

6
1
6 0 1

6 0 0 0
0 0 0 1

6 0 1
6

1
6 0 0 1

6
1
6 0 1

6 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

6 0 1
6

1
6 0 0 1

6
1
6 0 1

6 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(44)

Hence,

Ξ|D
4
2〉(%) = |%4,6|+|%4,7|+|%4,6|+|%4,7|+|%6,7|+|%7,6|+|%10,4|+|%11,4|+|%4,10|+|%4,11| =

5

3
(45)√

%0000%1111 =
√
%1,1%16,16 = 0 (46)

We shall clarify the terms in equation (43) for future referencing. The term
%0000 refers to element %1,1 in the density matrix, while %1111 = %16,16. %I is
the set of indices that sums to |I|. For instance, in the set of %|1| consist of
%0001, %1000, %0100, %0010. Thus,∑

|I|=1

∑
|J|=3

√
%I%J = 0 (47)

and ∑
|I|=2

%I = 1 (48)

R.H.S of equation (43) giving a value of 3
2 , violating the inequality, proving that

the states are genuine multiparite entangled.

The 4-partite W and GHZ states have slightly different criteria. Namely,

• For GHZ state |GHZ4〉 = 1√
2
(|0000〉+ |1111〉), the criterion is given as:

ΞGHZ4(%) ≤ 1

2

∑
|I|=1,2,3

√
%I%Ī (49)

The term %Ī refers to the terms with indices inverted with respect to %I .
E.g. for |1̄| we have, %0111, %1011...
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• for W4 state |W4〉 = 1
2 (|0001〉+ |0010〉+ |0100〉+ |1000〉), the criterion is

given as:

ΞW4(%) ≤
∑
|I|=2

√
%0000%I +

∑
|I|=1

%I (50)

The main idea behind the criteria is the same as describled above. It applied to
all different partitions such as A|BCD,AB|CD. Note that states that violate
any of the witness criteria will be a genuine multipartite entangled. We would
have to derive the witness for the W̄ for future reference.

4.2 Criterion for
∣∣W̄4

〉
Let us begin by considering the following states, |W4〉 = 1

2 (|0001〉 + |0010〉 +
|0100〉 + |1000〉) and

∣∣W̄4

〉
= 1

2 (|1110〉 + |1101〉 + |1011〉 + |0111〉) with density
matrices denoted as %W and %W̄ respectively.

%W =



0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.25 0.25 0. 0.25 0. 0. 0. 0.25 0. 0. 0. 0. 0. 0. 0.
0. 0.25 0.25 0. 0.25 0. 0. 0. 0.25 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.25 0.25 0. 0.25 0. 0. 0. 0.25 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0.25 0.25 0. 0.25 0. 0. 0. 0.25 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.


(51)
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%W̄ =



0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.25 0. 0. 0. 0.25 0. 0.25 0.25 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.25 0. 0. 0. 0.25 0. 0.25 0.25 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
0. 0. 0. 0. 0. 0. 0. 0.25 0. 0. 0. 0.25 0. 0.25 0.25 0.
0. 0. 0. 0. 0. 0. 0. 0.25 0. 0. 0. 0.25 0. 0.25 0.25 0.
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.


(52)

The simplest approach will be mirroring the steps for |W 〉. Let ΞW̄ be the sum
of the off diagonal lower triangular matrix elements of %W̄ since they are mirror
of one another. Then we can start to match term for term:

%W4
(1, 1) = %W̄4

(16, 16) (53)

%W4
(2, 2) = %W̄4

(15, 15) (54)

%W4
(3, 3) = %W̄4

(14, 14) (55)

%W4
(4, 4) = %W̄4

(13, 13) (56)

%W4
(5, 5) = %W̄4

(12, 12) (57)

%W4
(6, 6) = %W̄4

(11, 11) (58)

%W4
(7, 7) = %W̄4

(10, 10) (59)

%W4
(9, 9) = %W̄4

(7, 7) (60)

%W4
(10, 10) = %W̄4

(6, 6) (61)

%W4
(11, 11) = %W̄4

(5, 5) (62)

%W4
(12, 12) = %W̄4

(4, 4) (63)

(64)

The corresponding inequality reads,

ΞW̄ ≤
∑
|I|=2

√
%1111%I +

∑
|I|=3

%I (65)

For comparison, one can conduct a noise test on both states, which should give
the same value. Consider the following state, %W4

(p) = (1− p) |W4〉〈W4|+ p
161.

The p value obtain by the Guhne is determined to be p < 4
9 . In our criteria, we

obtain the same result for both |W4〉 and
∣∣W̄4

〉
which also correspond to that

of Guhne. We shall use this set of criteria in the later stage.
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5 Correlation

In Statistics, correlation function refers to the expectation value of the product
of outcomes of multiple random variables. Suppose there are N observers, then
the quantum correlation function can be expressed in the following equation:

〈r1...rn〉 = Tr(%σji ⊗ ...⊗ σjn) (66)

where σji is the pauli opertator.

5.1 GME without multipartite correlation functions for
odd number of qubits

Kaszlikowski et al [6] showed that for any odd number of qubits, one can generate
a state that does not have n-partite correlations. One of the simpler example
of this is the state %N = 1

2 (|W 〉〈W |+
∣∣W̄〉〈W̄ ∣∣). For three qubits |W 〉 is defined

as |W 〉 = 1√
3
(|001〉 + |010〉 + |100〉) and

∣∣W̄〉 is its ’antistate’, generated from

applying σx gate on each individual qubit. While Kaszlikowski et al [6] had
stated that the state is genuinely multipartite entangled, we still tested the 3
qubit state using the criteria (40) and (41). (41) shows a positive result for
genuinely multipartite entanglement while (41) failed in the detection. This
is expected since (41) has a higher noise tolerance threshold. The results are
shown below:

• For criterion (40),
|%1,8| ≤

√
%2,2%7,7 +

√
%3,3%6,6 +

√
%4,4%5,5

The L.H.S yields 0 while the R.H.S yields 1
2 .

• For criterion (41),
|%2,3|+|%2,5|+|%3,5| ≤

√
%1,1%4,4+

√
%1,1%6,6+

√
%1,1%7,7+ 1

2 (%2,2+%3,3+%5,5)

The L.H.S yields 1
2 while the R.H.S yields 1

4 , resulting in the violation of
the inequality.

The next step would be to show that for %N there is no N -fold correlation. We
shall adopt the proof by Bennett et al [7] for our case. First, define Tµ such
that,

Tµ = Tr
[
%(σxµi

⊗ σxµi+1
⊗ σzµi

⊗ ...⊗ σzµN
)
]

(67)

where µi = {0, 1...N}
µi in this case represents the number of the measurement.
Consider the following relations:

σx1σ
x
2σ

z
3 ...σ

z
N |100...0〉 = |010...0〉 (68)

σx1σ
x
2σ

z
3 ...σ

z
N |010...0〉 = |100...0〉 (69)

σx1σ
x
2σ

z
3 ...σ

z
N |001...0〉 = − |111...0〉 (70)

σx1σ
x
2σ

z
3 ...σ

z
N |011...1〉 = (−1)N |101...1〉 (71)

σx1σ
x
2σ

z
3 ...σ

z
N |101...1〉 = (−1)N |011...1〉 (72)

σx1σ
x
2σ

z
3 ...σ

z
N |110...1〉 = −(−1)N |000...1〉 (73)
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Hence,

〈W |(σxµi
⊗ σxµi+1

⊗ σzµi
⊗ ...⊗ σzµN

)|W 〉 =
2

n
(74)〈

W̄
∣∣(σxµi

⊗ σxµi+1
⊗ σzµi

⊗ ...⊗ σzµN
)
∣∣W̄〉 = (−1)N

2

n
(75)

At the same time,

Tµ = 〈W |(σxµi
⊗ σxµi+1

⊗ σzµi
⊗ ...⊗ σzµN

)|W 〉+
〈
W̄
∣∣(σxµi

⊗ σxµi+1
⊗ σzµi

⊗ ...⊗ σzµN
)
∣∣W̄〉

(76)
Combining (74), (75) and (76),

Tµ = 0 (77)

5.2 GME without multipartite correlation for even num-
ber of qubits

The states for even N that are genuinely multipartite entangled and have no N -
fold correlations are not known to exist. We shall propose one such example and
show that it is indeed genuniely multipartite entangled with our set of criteria.
Consider % = 1

4 (|ψ1〉〈ψ1|+ |ψ2〉〈ψ2|+ |ψ3〉〈ψ3|+ |ψ4〉〈ψ4|) where,

|ψ1〉 =
1

2
(|0001〉+ |0010〉+ |0100〉+ |1000〉) (78)

|ψ2〉 =
1

2
(|0111〉 − |1011〉+ |1101〉 − |1110〉 (79)

|ψ3〉 =
1√
2

(|1100〉+ |0110〉) (80)

|ψ4〉 =
1√
2

(|1100〉+ |1001〉) (81)

(82)

Using our set of criteria, % is tested to violate the criterion (41), which proves
that it is indeed geuninely multipartite entangled. Let S equals R.H.S−L.H.S,
then if S is negative, the criterion is violated. In our case, S = −0.3125. |ψ3〉
and |ψ4〉 does violate the set of criteria as they are indeed biseparable.

|ψ3〉 =
1√
2

(|0〉 ⊗ (|011〉+ |110〉) (83)

|ψ4〉 =
1√
2

(|1〉 ⊗ (|100〉+ |001〉) (84)

However, it appears that |ψ2〉 does not violate the criterias even though it is
genuinely multipartite entangled. Exploring further, it appears that our criteria
is not well suited to detect states with a mixture of states with positive and
negative coefficients. For instance, when we used the criteria to further test
another state which is known to be genuine multipartite entangled, |ψ1〉 =
1
2 (|0001〉 − |0010〉+ |0100〉 − |1000〉) and the criterion is not violated as well.
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6 Maximum dimension of a bounded subspace

In the understanding of the properties of genuine multipartite entanglement, a
interesting question pops up; What is the bound on the maximum dimension
of the subspaces that spans the Hilbert space such that there are no product
states in any permutation? In other words, what is the maximum dimension of
subspaces with all state having a Schimdt rank of 2 in all permutations? There
have been several studies done on a similar subject, which is the maximum
bounded subspace such that there are no product states which is a less restricted
problem. In this report, we shall give a brief review on one such studies.

6.1 Dimension of subspaces with bounded Schmidt rank

Winter et al [8], provided a proof based on parameter counting and supple-
mented it with a method to construct such a subspace for a bipartite system.
Consider a bipartite system with dimension given by dA × dB . Then the max-
imum dimension of the subspace such that each state has a Schmidt rank of r
is given by (dA − r + 1)(dB − r + 1). To understand the method of counting of
the possible number of subspaces, it is essential to establish the mathematical
framework and vector space to work in.

• Affine space:
A affine space An over a field K is vector field Kn where the origin does
not have any special role.

• Variety:
Variety is defined as the set of solutions to a system of equations.

• Affine Variety: The common zero locus of a collection of polynomials
such that the sets of polynomials is in the algebraic ring over the field K;
f ∈ k[x1, x1, x2...xn, ].

In a more approachable manner, we can use some examples.
1. Consider a 2 dimensional affine space A2 over the real field R. Polyno-
mials in the ring R[x, y] can then be viewed as functions on A2 Suppose
the set of polynomials has the elements {f1(x, y), f2(x, y)} where, f1 =
x2 + y2 − 1 and f2 = 2x− y, then sets of point {(− 1√

2
,− 1√

2
), ( 1√

2
, 1√

2
))}

on A2 will be its variety. In essence, the variety is the interception points
of the various curve or polynomials.

• Projective space:
The projective space over a field K is the set of one-dimensional subspaces
of the vector space Kn+1. In other words, the projective space Pn is the
set of lines that pass through the origin of the space defined.

• Projective Varieties:
The definition of projective variety is somewhat a huge chunk to digest.
Formally, the projective variety over a algebraically closed field k is of a
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projective space, Pn is the zero locus of a collection of homogeous poly-
nomials Fd. Where any point in Pn is written as a homogeneous vector
[Z0.....Zn] and F is homogeneous of degree d such that,

F (λZ0....λZn) = λdF (Z0.....Zn) (85)

The rest of it is actually quite similiar to affine variety.

• Order-r-minor:
This refers to the determinant of r × r submatrix.

• Determintant variety:
The determinant variety over an algebraically closed field k in the space
kdAdB is the zero locus of all order-r-minors of a given dA × dB matrix.

• Totally non-singular martix:
A matrix is totally non-singular if all its minor are non-zero. One of its
special properties is that in a M ×M totally non singular matrix, any
linear combination of n of the columns of M , denoted by ν contains at
most n− 1 zero elements, if n < M .

One can prove this by contradiction. Suppose that the opposite is true,
and there is more than n − 1 zero elements in ν. Then one arranges the
columns of the set of n columns while deleting the rows in M , whose row
indices equate to the indices of non zero elements in ν. This will generate
a submatrix that has linearly dependent columns, which contradicts the
definition of a totally non-singular martrix.

• Vandermonde matrix: A vandermonder n × n matrix is one that is the
form;

V =


1 α1 α2

1 ... αn−1
1

1 α2 α2
2 ... αn−1

2

1 α3 α2
3 ... αn−1

3
...

...
...

. . .
...

1 αn α2
n ... αn−1

n

 (86)

One special defining structure of this type of matrix is that each element
in the rows of the matrix follows a geometric progression. The matrix has
another key property which is instrumental in our case; a Vandermonde
matrix is totally non-singular iff the parameters α1...αn are distinct. This
arises from the determinant of A;

detA =

n∏
i,j=1
i>j

(αi − αj) (87)

While there are multiple proofs for (86), it will not be covered as it is not
a main focus of this write up.
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• Complex matrix:
A complex matrix is one in which the matrix contains complex numbers.
The complex numbers give rise to several interesting properties, especially
in the underlying symmetries. It has been proven that an complex matrix
is isomorphic to a Vandermonde matrix. This is done through Hadamards
Maximum determinant. The full details are quite complicated and thus
only a brief review will be done here.

In the Hadamards Maximum determinant problem, one is interested in
the largest possible determinant for any n × n square complex matrix
whose element lies in a closed unit disk of 1. The bound is determined to
be close to the following relationship by Hadamards in 1893;

|det| ≤ nn
2 (88)

This bound is isomorphic to the bound obtain by Vandermonde matrix
of n roots of unity. As it is purely a mathematical interpretation, we
will turn our focus to the physical significance of a totally non singular
complex matrix. Suppose we have a state |Ψ〉 such that:

|Ψ〉 = a1 |0000〉+ a2 |0001〉+ ...+ a16 |1111〉 (89)

Writing an into a matrix M ,

M =


a1 a2 a3 a4

a5 a6 a7 a8

a9 a10 a11 a12

a13 a14 a15 a16

 (90)

The rationale behind the usage of projective space is that every state in the
Hilbert space regardless of its coefficent can be represented by an element in
the projective space. These elements can be put to a matrix and the solution to
each sub-matrix or minor forms a variety in that space with these sub-matrices
corresponding to subspaces in the Hilbert space. The rank of the given matrices
can then be worked out using properties of determinant, which in turn gives the
Schmidt rank of the subspace. Since the rank of the martix is isomorphic to
the Schmidt rank, the bound on the Schmidt rank is isomorphic to the bound
of the rank of the matrices. Using this property, one can identify the dimension
of the determinant variety and thus determine the dimension of the bound on
the Schmidt rank.

Proposition 1:
The variety of the set of m × n matrices of rank at most r is such that each
minor has a rank of less then r is irreducible of codimension of (m−r)(n−r).[9]

Since we are mainly interested in the determinant variety, we can first tweat
proposition 1 into: The variety of the set of m×n matrices of rank at less than
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r is such that each minor has a rank of less then r is irreducible of codimension
of (m− r − 1)(n− r − 1)
As the determinant variety is defined by the set of vanishing order r minors, the
size of this determinant variety will be defined as mn− (m−r−1)(n−r−1). If
the chosen subspace has a dimension of more then (m− r− 1)(n− r− 1), then
one can be sure that at least a state with Schmidt rank less then r will exist in
that subspace, since P(S)∩P(D) < 0. This is a result from the requirement that
the dimP(S) + dimP(D) ≥ dimPmn and dimP(S) > (m− r− 1)(n− r− 1)− 1
by definition. P here represents the projective space.

The next step would be to show that one can always construct a bipartitie
system, such that there is subspace with dimension of (m − r − 1)(n − r − 1)
or (dA − r − 1)(dB − r − 1) in a CdA ⊗ CdB complex space. To illustrate the
steps, consider a bipartition tripartite system H = C2 ⊗ C4. There are 3 ways
to arrange the partitions; A|BC,B|CA and C|AB. It is enough for us to just
consider a single partition(A|BC) in our illustration as the steps are essentially
the same. Consider the following quantum state:

|Ψ3〉 = a1 |000〉+ a2 |001〉+ ...+ a8 |111〉 (91)

Then one can put the coefficients into a matrix:

CA|BC =

[
a1 a2 a3 a4

a5 a6 a7 a8

]
(92)

The next step would be to label the diagonals of MA|BC starting from the
bottom left and write the diagonals in to a set of vectors,

ν11 =
[
a5

]
(93)

ν12 =

[
a1

a6

]
(94)

ν13 =

[
a2

a7

]
(95)

ν14 =

[
a3

a8

]
(96)

ν15 =
[
a4

]
(97)

(98)

If the length of the vector is larger or equal to r, construct a matrix with the
vector in the position as its original diagonal position in MA|BC . This will
create a set of matrices with rank at least r that are linearly independent to
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each other, and in our example,

M11 =

[
a1 0 0 0
0 a6 0 0

]
(99)

M12 =

[
0 a2 0 0
0 0 a7 0

]
(100)

M13 =

[
0 0 a3 0
0 0 0 a8

]
(101)

(102)

Thus we can create a new set of quantum states from this set of matrices that
have no product states in the partition A|BC, namely,

|ψ1〉 = α(a1 |000〉+ a6 |101〉) (103)

|ψ2〉 = β(a2 |001〉+ a7 |110〉) (104)

|ψ3〉 = γ(a3 |010〉+ a8 |111〉) (105)

|Ψ3′〉 = |ψ1〉+ |ψ2〉+ |ψ3〉 (106)

where α, β, γ are arbituary constants and |Ψ3′〉 is the desired state with a sub-
space of dimension 3. This is a less formal and more illustrative construction as
compared to the more generalised derivation in the Winter et al paper. Looking
from another perspective, it is intuitive to see that one can obtain another set
of matrices when take the anti-diagonals instead. The new set will consist of
the matrix below,

M11′ =

[
0 a2 0 0
a5 0 0 0

]
(107)

M12′ =

[
0 0 a3 0
0 a6 0 0

]
(108)

M13′ =

[
0 0 0 a4

0 0 a7 0

]
(109)

(110)

This observation does not add value into the generalised derivation of Winter
et al if one is just considering the subspaces in a single partition, since the
dimension of this subspace will not change whether one takes the diagonals or
anti-diagonals in the construction. The significance of this difference will come
in later in our construction later.

As we are aimming to construct a state that is genuine multi-partite entan-
gled, we have to start considering other partition, namely B|CA and C|AB in
our tripartite example. Using the same construction method for the other par-
titions with the tripartite system defined as in (83), we obtain 2 new coefficent
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matrices,

CB|CA =

[
a1 a2 a5 a6

a3 a4 a7 a8

]
(111)

CC|AB =

[
a1 a3 a5 a7

a2 a4 a6 a8

]
(112)

If we compare the set of vector that has length more then r generated form the
partition B|CA,

ν22 =

[
a1

a4

]
(113)

ν23 =

[
a2

a7

]
(114)

ν24 =

[
a5

a8

]
(115)

with that of partition C|AB,

ν32 =

[
a1

a4

]
(116)

ν33 =

[
a3

a7

]
(117)

ν34 =

[
a5

a8

]
(118)

as well as those from partition A|BC, there is no interception between the 3
sets of vectors. This is where the significance of the anti-diagonal construction
comes in. With the anti-diagonal construction, we included all the combinatrics
of 6 sets of vectors. As the construction from the anti-diagonals and diagonals
of every partition is strictly non intercepting with one another, one can just
ignored them. However the interception between set of vectors from diagonal of
one partition with the set of vectors from the anti-diagonal of another parition
is not a null set. However, even with this inclusion, it is still not possible to
find any states that are common in the 6 sets. From another perspective, this
method of construction provides us another simple witness if a state |ψi〉, is
biseparable. By comparing the states with 3 matrices of coefficients, one can
easily obtain the results, since if it is biseparable, the components will not have
the same rolls or columns in all 3 matrices. The simplest case would be the
GHZ state, with the coeffcients a1 and a8. Thus we can use this to eliminate
the biseparate states, obtaining substates that are each geniune multipartite
entangled. The total possible number of states will then reduce from 28 to 6.
However, it is still not possible obtain the desired results.

6.2 Alternative Construction

From observation of the general construction of the tripartite states, we made
an interesting observation and managed to create a GME state that indeed fit
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the required bound on the subspace for the tri-partite system. Thus we propose
the following states,

|ψ1′〉 = α′(|000〉+ |111〉) (119)

|ψ2′〉 = β′(|001〉+ |010〉+ |100〉) (120)

|ψ3′〉 = γ′(|011〉+ ω |110〉+ ω2 |101〉) (121)

where ω = eiθ, θ 6= 2nπ and α′, β′, γ′ are arbitary constants.
We shall then prove that the state |ψGME′〉 = |ψ1′〉 + |ψ2′〉 + |ψ3′〉 is genuine
multipartite entangled. Suppose |ψGME′〉 is separable for the bi-partition A|BC:

|Ψ〉 = (a |0〉+ b |1〉)⊗ (c1 |00〉+ c2 |01〉+ c3 |10〉+ c4 |11〉) (122)

By comparison, one obtain the following set of equations:

α′ = ac1 = bc4 (123)

β′ = ac2 = ac3 = bc1 (124)

γ′ = ac4 = ωbc3 = ω2bc2 (125)

From equation (116), one observe that

c2 = c3 (126)

However, from equation (117),
ωc2 = c3 (127)

Since ω is non zero, the only viable solution has c2 = 0, which is a trival result,
since if c2 is 0, c1, c3, c4 have to be 0, thus |Ψ〉= 0. Hence |Ψ〉 is non bi-separable
in the A|BC partition. The steps are repeated for the other 2 partitions. In the
case of second partition B|CA, one obtains the following set of equations after
comparision:

α′ = ac1 = bc4 (128)

β′ = ac2 = ac3 = bc1 (129)

γ′ = ω2ac4 = ωbc3 = bc2 (130)

Again,
c2 = c3 (131)

The difference comes from equation (122), such that now,

c2 = ωc3 (132)

which is similar to the case for A|BC partition. This shows that for B|CA, |Ψ〉
is non bi-separable. Lastly, we have for the final partition we shall focus on just
γ′, as the rest are just repetition due to permutational symmetry.

γ′ = ωac4 = ω2bc3 = bc2 (133)
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Hence,
c2 = ω2c3 (134)

Which is indeed the conclusion that was predicted. The violation is similar to
A|BC and B|CA partition. Thus we can conclude that any state being a su-
perposition of (119)-(121) is GME. Hence there are states span a 3-dimensional
subspace with only GME states. The next key step is to understand how and
why this works. This method is tested for 2 partite systems and it does not
work for 2 partite system however. We hypothesised that this is due to the com-
bination of both |W 〉 and

∣∣W̄〉 states allows one to form contradictions and for

2 partite systems, there is no |W 〉 and
∣∣W̄〉 states. While this appears to work

for 4-partite system to obtain a subspace, the size of the subspace for the states
created would then be much lesser then bound on the subspaces proposed by
Winter et al which is 7. Moreover this method of construction does not provide
a definite proof for bound on the subspace.

6.3 Possible future developments

The key to finding a mathematical and analytical solution to the bound on
the subspaces lies on the bound on the dimensions of determinant variety. For
Winter et al, they are only interested in just one partition of the system. Thus
proposition 1 is not enough for the case of genuine multipartite entanglement,
since for each different partition the matrices are different even though the size
of the matrices and elements are the same. Fundamentally, one can imagine
the solutions as a bundle of fibre, with each fibre crisscrossing at the various
partitions and the determinant variety as the solution created when one take
a slice at the bundle when the fibre crisscrossed and counts the number of
points inside a certain ’area’, which in our case, the ’area’ refers to the Schmidt
rank. Thus one has to find the maximum number of points that are enclosed
in this ’area’ no matter how the bundle crisscrosses. Plainly, one has to find
the cardinal of the interception of the determinant varieties of the different
partitions. One possible method could be the usage of Segre embedding which
allows the mapping of varieties to a higher dimension geometry object.
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